Skip to main content
Log in

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BMIBF4

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C P,m (J K–1 mol–1)= 195.55+47.230 X–3.1533 X 2+4.0733 X 3+3.9126 X 4 [X=(T–125.5)/45.5] for the solid phase (80~171 K), and C P,m (J K–1 mol–1)= 378.62+43.929 X+16.456 X 2–4.6684 X 3–5.5876 X 4 [X=(T–285.5)/104.5] for the liquid phase (181~390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass translation of BMIBF4 was observed at 176.24 K. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BMIBF4 was determined to be Δc H m o= – 5335±17 kJ mol–1. The standard molar enthalpy of formation of BMIBF4 was evaluated to be Δf H m o= –1221.8±4.0 kJ mol–1 at T=298.150±0.001 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CM Gordon JD Holbrey AR Kennedy KR Seddon (1998) J. Mater. Chem. 8 2627 Occurrence Handle1:CAS:528:DyaK1cXnvVSmsrs%3D Occurrence Handle10.1039/a806169f

    Article  CAS  Google Scholar 

  2. J Fuller RT Cartin RA Osteryoung (1997) J. Electrochem. Soc. 144 3881 Occurrence Handle1:CAS:528:DyaK2sXnsV2nsrc%3D Occurrence Handle10.1149/1.1838106

    Article  CAS  Google Scholar 

  3. J Sun M Forsyth DR Macfarlane (1998) J. Phys. Chem. B. 102 8858 Occurrence Handle1:CAS:528:DyaK1cXmsVWjt78%3D Occurrence Handle10.1021/jp981159p

    Article  CAS  Google Scholar 

  4. T Welton (1999) Chem. Rev. 99 2071 Occurrence Handle1:CAS:528:DyaK1MXkt1artrw%3D Occurrence Handle10.1021/cr980032t

    Article  CAS  Google Scholar 

  5. AJ Carmichael KR Seddon (2000) J. Phys. Org. Chem. 13 591 Occurrence Handle1:CAS:528:DC%2BD3cXns1ShsLk%3D Occurrence Handle10.1002/1099-1395(200010)13:10<591::AID-POC305>3.0.CO;2-2

    Article  CAS  Google Scholar 

  6. CE Song WH Shim EJ Roh SG Lee JH Choi (2001) Chem. Commun. 12 1122 Occurrence Handle10.1039/b101140p Occurrence Handle1:CAS:528:DC%2BD3MXktFGqurw%3D

    Article  CAS  Google Scholar 

  7. P Wasserscheid CM Gordon C Hilgers MJ Muldoon IR Dunkin (2001) Chem. Commun. 13 1186 Occurrence Handle10.1039/b101400p

    Article  Google Scholar 

  8. C Wheeler KN West CL Liotta CA Eckert (2001) Chem. Commun. 10 887 Occurrence Handle10.1039/b101202a

    Article  Google Scholar 

  9. F Endres (2001) Phys. Chem. Chem. Phys. 3 3165 Occurrence Handle1:CAS:528:DC%2BD3MXlt1ynsL8%3D Occurrence Handle10.1039/b102232f

    Article  CAS  Google Scholar 

  10. V Najdanovic-Visak JMSS Esperanca LPN Rebelo (2002) Phys. Chem. Chem. Phys. 4 1701 Occurrence Handle1:CAS:528:DC%2BD38Xjt1yitbY%3D Occurrence Handle10.1039/b201723g

    Article  CAS  Google Scholar 

  11. P Vasserscheid W Keim (2000) Angew. Chem. Int. Ed. 39 3772 Occurrence Handle10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5

    Article  Google Scholar 

  12. JD Holbrey KR Seddon (1999) Clean Products Processes 1 223

    Google Scholar 

  13. D Appleby CL Hussey KR Seddon JE Turp (1986) Nature 323 614 Occurrence Handle1:CAS:528:DyaL2sXktVKrsw%3D%3D Occurrence Handle10.1038/323614a0

    Article  CAS  Google Scholar 

  14. JL Anthony FJ Maginn Brennecke (2001) J. Phys. Chem. B. 105 10942 Occurrence Handle1:CAS:528:DC%2BD3MXntl2lsLs%3D Occurrence Handle10.1021/jp0112368

    Article  CAS  Google Scholar 

  15. JZ Yang P Tian LL He WG Xu (2003) Fluid Phase Equilib. 204 295 Occurrence Handle1:CAS:528:DC%2BD3sXhslKjsro%3D Occurrence Handle10.1016/S0378-3812(02)00265-0

    Article  CAS  Google Scholar 

  16. JZ Yang WG Xu QG Zhang (2003) J. Chem. Thermodyn. 35 1855 Occurrence Handle1:CAS:528:DC%2BD3sXot1Sksbk%3D Occurrence Handle10.1016/j.jct.2003.07.002

    Article  CAS  Google Scholar 

  17. JZ Yang P Tian WG Xu (2004) Thermochim. Acta 412 1 Occurrence Handle1:CAS:528:DC%2BD2cXhvV2nsb4%3D Occurrence Handle10.1016/j.tca.2003.09.008

    Article  CAS  Google Scholar 

  18. JD Holbrey WM Reichert RP Swatloski (2002) Green Chem. 4 407 Occurrence Handle1:CAS:528:DC%2BD38XnsFequ7o%3D Occurrence Handle10.1039/b204469b

    Article  CAS  Google Scholar 

  19. J Fuller RA Osteryoung RT Carlin (1995) J. Electrochem. Soc. 142 3632 Occurrence Handle1:CAS:528:DyaK2MXptlSmurk%3D Occurrence Handle10.1149/1.2048390

    Article  CAS  Google Scholar 

  20. EN Jacobsen I Marko KB Sharpless (1988) J. Am. Chem. Soc. 110 1986 Occurrence Handle10.1021/ja00214a065

    Article  Google Scholar 

  21. P Bonhote A.P Dias N Papageorgiou K Kalyanasundaram M Gratzel (1996) Inorg. Chem. 35 1168 Occurrence Handle1:CAS:528:DyaK28Xpt1Wgug%3D%3D Occurrence Handle10.1021/ic951325x

    Article  CAS  Google Scholar 

  22. PAZ Suarez JEL Dullius S Einloft RFD Souza J Dupnot (1996) Polyhedron 157 1217 Occurrence Handle10.1016/0277-5387(95)00365-7

    Article  Google Scholar 

  23. PJ Dyson MC Grossel N Srinivasan T Vine T Welton DJ Williams AJP White T Zigras (1997) Dalton 19 3465

    Google Scholar 

  24. RM Lau F van Rantwijk KR Seddon RA Sheldon (2000) Org. Lett. 2 4189 Occurrence Handle1:CAS:528:DC%2BD3cXotl2nsrg%3D Occurrence Handle10.1021/ol006732d

    Article  CAS  Google Scholar 

  25. PJ Dyson MC Grossel N Srinivasan T Vine T Welton DJ Williams AJP White T Zigras (1997) J. Chem. Soc., Dalton Trans. 1 3465 Occurrence Handle10.1039/a702978k

    Article  Google Scholar 

  26. ZC Tan GY Sun Y Sun AX Yin WB Wang JC Ye LX Zhou (1995) J. Thermal Anal. 45 59 Occurrence Handle1:CAS:528:DyaK2MXnslWmsr4%3D

    CAS  Google Scholar 

  27. ZC Tan LX Sun SH Meng L Li F Xu PYBP Liu JB Zhang (2002) J. Chem. Thermodyn. 34 1417 Occurrence Handle1:CAS:528:DC%2BD38XnsVeqsbw%3D Occurrence Handle10.1016/S0021-9614(02)00165-9

    Article  CAS  Google Scholar 

  28. G Archer (1993) J. Phys. Chem. Ref. Data 22 1441 Occurrence Handle1:CAS:528:DyaK2cXmtlGqsg%3D%3D Occurrence Handle10.1063/1.555931

    Article  CAS  Google Scholar 

  29. YY Di ZC Tan XH Sun MH Wang F Xu YF Liu LX Sun HT Zhang (2004) J. Chem. Thermodyn. 36 79 Occurrence Handle1:CAS:528:DC%2BD2cXmtFegsA%3D%3D Occurrence Handle10.1016/j.jct.2003.08.017

    Article  CAS  Google Scholar 

  30. SX Wang ZC Tan YY Di F Xu MH Wang LX Sun T Zhang (2004) J. Therm. Anal. Cal. 76 335 Occurrence Handle1:CAS:528:DC%2BD2cXjvFSrs7g%3D Occurrence Handle10.1023/B:JTAN.0000027833.24442.a0

    Article  CAS  Google Scholar 

  31. F Xu LX Sun ZC Tan J.GLiang YY Di QF Tian T Zhang. (2004) J. Therm. Anal. Cal. 76 481 Occurrence Handle1:CAS:528:DC%2BD2cXktVWhur4%3D Occurrence Handle10.1023/B:JTAN.0000028026.30886.ae

    Article  CAS  Google Scholar 

  32. ZD Nan ZC Tan (2004) J. Therm. Anal. Cal. 76 955 Occurrence Handle1:CAS:528:DC%2BD2cXkvFGgt78%3D Occurrence Handle10.1023/B:JTAN.0000032281.40952.7e

    Article  CAS  Google Scholar 

  33. B Xue JY Wang ZC Tan SW Lu SH Meng (2004) J. Therm. Anal. Cal. 76 965 Occurrence Handle1:CAS:528:DC%2BD2cXkvFGgtrY%3D Occurrence Handle10.1023/B:JTAN.0000032282.04071.f1

    Article  CAS  Google Scholar 

  34. YJ Song ZC Tan SW Lu Y Xue (2004) J. Therm. Anal. Cal. 77 873 Occurrence Handle1:CAS:528:DC%2BD2cXnsFOktrs%3D Occurrence Handle10.1023/B:JTAN.0000041666.78862.90

    Article  CAS  Google Scholar 

  35. ZC Tan B Xue SW Lu SH Meng XH Yuan YJ Song (2001) J. Therm. Anal. Cal. 63 297 Occurrence Handle1:CAS:528:DC%2BD3MXhs1Sjur4%3D Occurrence Handle10.1023/A:1010121427777

    Article  CAS  Google Scholar 

  36. HA Skinner et al. (1962) Experimental Thermochemistry, Vol. 2 John Wiley and Sons New York, London

    Google Scholar 

  37. JD Cox DD Wagman VA Medvedev et al. (1989) CODATA Key Values for Thermodynamics Hemisphere New York

    Google Scholar 

  38. JD Cox (1978) J. Chem. Thermodyn. 10 903 Occurrence Handle1:CAS:528:DyaE1cXmt1WqsLg%3D Occurrence Handle10.1016/0021-9614(78)90050-2

    Article  CAS  Google Scholar 

  39. M. W. Chase, Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph, 9 (1998) 1–1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Z. C..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z.H., Tan, Z.C., Li, Y.S. et al. Thermodynamic investigation of room temperature ionic liquid. J Therm Anal Calorim 85, 551–557 (2006). https://doi.org/10.1007/s10973-006-7640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7640-0

Keywords

Navigation