Skip to main content
Log in

Influence of measuring conditions on the quantification of spectroscopic signals in TA-FTIR-MS systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Simultaneous thermal analysis (TA) and evolved gas analysis by mass spectrometry (MS) and/or Fourier transform infrared spectroscopy (FTIR) is a powerful hyphenated technique combining direct measurement of mass loss and sensitive spectroscopic analysis. In the present study the influence of several experimental parameters which may affect the quantification of FTIR signals have been studied using a combined TA-FTIR-MS system. Parameters studied include: sample mass (1-400 mg), carrier gas flow rate (25-200 mL min-1), resolution of the FTIR spectrometer (1-32 cm-1), and location of injection of the calibrating gas.

MS analysis, which was not significantly affected by the experimental conditions, was used as a reference for assessing the accuracy of quantification by FTIR. The quantification of the spectroscopic signals was verified by the decomposition (NaHCO3) or dehydration (CuSO4·5H2O) of compounds with well-known stoichiometry.

The systematic study of the parametric sensitivity revealed that spectral resolution and carrier gas flow rate, which affect the acquisition time in the IR-cell, are key parameters that must be adjusted carefully for reliable quantification. The dependence of the reliability of quantification on these parameters is illustrated and conditions leading to proper quantification are discussed. As an example, for a standard spectral resolution of 4 cm-1 and a FTIR gas cell volume of 8.7 mL, the carrier gas flow must be lower than 100 mL min-1 for warranting accurate results (relative deviation <2%). The concentration range of analyzed species is limited but can be extended by proper selection of the wavenumber regions for molecules giving strong IR signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Materazzi R Curini G D'Ascenzo AD Magri (1995) Thermochim. Acta 264 75 Occurrence Handle10.1016/0040-6031(95)02404-P Occurrence Handle1:CAS:528:DyaK2MXpslKrt78%3D

    Article  CAS  Google Scholar 

  2. S Materazzi (1998) Appl. Spectrosc. Rev. 33 189 Occurrence Handle1:CAS:528:DyaK1cXmvF2rtb8%3D

    CAS  Google Scholar 

  3. S Materazzi (1997) Appl. Spectrosc. Rev. 32 385 Occurrence Handle1:CAS:528:DyaK1cXlvVCmtg%3D%3D

    CAS  Google Scholar 

  4. M Mittleman (1990) Thermochim. Acta 166 301 Occurrence Handle10.1016/0040-6031(90)80190-A Occurrence Handle1:CAS:528:DyaK3cXmt1eksbo%3D

    Article  CAS  Google Scholar 

  5. LCK Liau TCK Yang DS Viswanath (1997) Appl. Spectrosc. 51 905 Occurrence Handle10.1366/0003702971941232 Occurrence Handle1:CAS:528:DyaK2sXktVKntrw%3D

    Article  CAS  Google Scholar 

  6. MF Cai RB Smart (1993) Energy Fuels, 7 52 Occurrence Handle10.1021/ef00037a010 Occurrence Handle1:CAS:528:DyaK3sXkt1Sgtg%3D%3D

    Article  CAS  Google Scholar 

  7. B Roduit J Baldyga M Maciejewski A Baiker (1997) Thermochim. Acta, 295 59 Occurrence Handle10.1016/S0040-6031(97)00101-9 Occurrence Handle1:CAS:528:DyaK2sXksl2ktbs%3D

    Article  CAS  Google Scholar 

  8. J Wang B McEnaney (1991) Thermochim. Acta, 190 143 Occurrence Handle10.1016/0040-6031(91)85240-I Occurrence Handle1:CAS:528:DyaK38XhsFSgtg%3D%3D

    Article  CAS  Google Scholar 

  9. J Wang B McEnaney (1991) Thermochim. Acta, 190 143 Occurrence Handle10.1016/0040-6031(91)85240-I Occurrence Handle1:CAS:528:DyaK38XhsFSgtg%3D%3D

    Article  CAS  Google Scholar 

  10. M Maciejewski A Baiker (1997) Thermochim. Acta 295 95 Occurrence Handle1:CAS:528:DyaK2sXksl2ku7g%3D

    CAS  Google Scholar 

  11. F Eigenmann M Maciejewski A Baiker (2000) in Proc. 3rd SKT 2000 Netzsch Selb, Germany 183

    Google Scholar 

  12. F Eigenmann M Maciejewski A Baiker (2005) Thermochim. Acta 440 81

    Google Scholar 

  13. K Marsanich F Barontini V Cozzani L Petarca (2002) Thermochim. Acta 390 153 Occurrence Handle10.1016/S0040-6031(02)00114-4 Occurrence Handle1:CAS:528:DC%2BD38XkslCrsb0%3D

    Article  CAS  Google Scholar 

  14. TL Slager FM Prozonic (2005) Thermochim. Acta 426 93 Occurrence Handle10.1016/j.tca.2004.07.022 Occurrence Handle1:CAS:528:DC%2BD2MXmtlSmug%3D%3D

    Article  CAS  Google Scholar 

  15. E Post S Rahner H Mohler A Rager (1995) Thermochim. Acta, 263 1 Occurrence Handle10.1016/0040-6031(94)02388-5 Occurrence Handle1:CAS:528:DyaK2MXpsFSgtr8%3D

    Article  CAS  Google Scholar 

  16. I Pitkanen J Huttunen H Halttunen R Vesterinen (1999) J. Therm. Anal. Cal. 56 1253 Occurrence Handle1:CAS:528:DyaK1MXnt1Wmsrw%3D

    CAS  Google Scholar 

  17. F Barontini K Marsanich V Cozzani (2004) J. Therm. Anal. Cal. 78 599 Occurrence Handle10.1023/B:JTAN.0000046122.00243.ed Occurrence Handle1:CAS:528:DC%2BD2cXovFOgtrg%3D

    Article  CAS  Google Scholar 

  18. RS Jackson A Rager (2001) Thermochim. Acta 367-368 415 Occurrence Handle10.1016/S0040-6031(00)00694-8 Occurrence Handle1:CAS:528:DC%2BD3MXhslOmtrc%3D

    Article  CAS  Google Scholar 

  19. R Bassilakis RM Carangelo MA Wojtowicz (2001) Fuel 80 1765 Occurrence Handle10.1016/S0016-2361(01)00061-8 Occurrence Handle1:CAS:528:DC%2BD3MXmvVegt7g%3D

    Article  CAS  Google Scholar 

  20. A Perez-Ponce JM Garrigues S Garrigues M de la Guardia (1998) Analyst 123 1817 Occurrence Handle1:CAS:528:DyaK1cXls1Omu7g%3D

    CAS  Google Scholar 

  21. AI Balabanovich A Hornung D Merz H Seifert (2004) Polym. Degrad. Stab. 85 713 Occurrence Handle1:CAS:528:DC%2BD2cXksl2ls7s%3D

    CAS  Google Scholar 

  22. WM Groenewoud W de Jong (1996) Thermochim. Acta 286 341 Occurrence Handle10.1016/0040-6031(96)02940-1 Occurrence Handle1:CAS:528:DyaK28Xmt1Cmsbc%3D

    Article  CAS  Google Scholar 

  23. F Eigenmann M Maciejewski A Baiker (2000) Thermochim. Acta 359 131 Occurrence Handle10.1016/S0040-6031(00)00516-5 Occurrence Handle1:CAS:528:DC%2BD3cXks12msLo%3D

    Article  CAS  Google Scholar 

  24. F Eigenmann M Maciejewski A Baiker (2005) Appl. Catal. B 62 311

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiker A .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eigenmann, F., Maciejewski, M. & Baiker, A. Influence of measuring conditions on the quantification of spectroscopic signals in TA-FTIR-MS systems . J Therm Anal Calorim 83, 321–330 (2006). https://doi.org/10.1007/s10973-005-7387-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7387-z

Keywords

Navigation