Skip to main content

Element-Specific Detection

  • Chapter
  • First Online:
Practical Gas Chromatography

Abstract

Spectroscopic methods like atomic emission spectrometry or inorganic mass spectrometry are known for their high sensitivity and selectivity. A very broad range of elements can be detected with these techniques up to ultra-trace concentrations. The detectors used for the high-resolution separation method, gas chromatography (GC), were limited by their sensitivity and selectivity (flame ionization detector [FID], thermal conductivity detector [TCD]) as well. Metals, metalloids and nonmetals like P, S, and halogens could not be analyzed satisfyingly with those detectors. Therefore, the coupling of GC with more efficient atomic emission and inductively coupled plasma mass spectrometers was promoted at the end of the 1980s. With the development of adapters connecting GC with the elemental specific detectors, today so-called ‘transfer line’, a vitally important building block was successfully applied.

Based on these configurations, analytical methods and tools for speciation analysis of volatile metal and metalloid species as well as for numerous heteroatomic organicals found and find a broad interest and application to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Stee LLP, Brinckman UAT (2008) Developments in the application of gas chromatography with atomic emission (plus mass spectrometric) detection. J Chromatogr A 1186:109–122

    Article  Google Scholar 

  2. McCormack AJ, Tong CS, Cooke WD (1965) Sensitive selective gas chromatography detector based on emission spectrometry of organic compounds. Anal Chem 37:1470–1476

    Article  CAS  Google Scholar 

  3. Widmer HM (1989) Introduced in Basel – AED, the plasma atomic-emission detector from Hewlett-Packard. Chimia 43:18–23

    Google Scholar 

  4. Beenakker CIM (1976) A cavity for microwave-induced plasmas operated in helium and argon at atmospheric pressure. Spectrochim Acta 31B:483–486

    Article  CAS  Google Scholar 

  5. Beenakker CIM (1977) Evaluation of a microwave-induced plasma in helium at atmospheric pressure as an element-selective detector for gas chromatography. Spectrochim Acta 32B:173–187

    Article  CAS  Google Scholar 

  6. Quimby BD, Sullivan JJ (1990) Evaluation of a microwave cavity, discharge tube, and gas flow system for combined gas chromatography-atomic emission detection. Anal Chem 62:1027–1034

    Article  CAS  Google Scholar 

  7. Rosenkranz B, Bettmer J (2000) Microwave-induced plasma-optical emission spectrometry – fundamental aspects and applications in metal speciation analysis. TRAC 19:138–156

    CAS  Google Scholar 

  8. Lobinski R, Adams FC (1997) Speciation analysis by gas chromatography with plasma source spectrometric detection. Spectrochim Acta 52:1865–1903

    Article  Google Scholar 

  9. (1998) HP Atomic Emission Detector. Listing of AED Publications

    Google Scholar 

  10. Wuilloud JCA, Wuilloud RG, Vonderheide AP, Caruso JA (2004) Gas chromatography/plasma spectrometry – an important analytical tool for elemental speciation studies. Spectrochim Acta 59:755–792

    Article  Google Scholar 

  11. Boukraa MS, Deruaz D, Bannier A, Desage M, Brazier JL (1994) Detection of C-13 labeled compounds by gas chromatography coupled to atomic-emission detection-application to caffeine metabolites. J Pharm Biomed Anal 12:185–194

    Article  CAS  Google Scholar 

  12. Stevens NA, Borgerding MF (1999) GC-AED studies of nicotine fate in a burning cigarette. Anal Chem 71:2179–2185

    Article  CAS  Google Scholar 

  13. Pereiro IR, Diaz AC (2002) Speciation of mercury, tin, and lead compounds by gas chromatography with microwave-induced plasma and atomic-emission detection (GC-MIP-AED). Anal Bioanal Chem 372:74–90

    Article  CAS  Google Scholar 

  14. Szelewski MJ (1997) Application Note Agilent technologies

    Google Scholar 

  15. Hoch M (2001) Organotin compounds in the environment – an overview. Appl Geochem 16:719–743

    Article  CAS  Google Scholar 

  16. Uden PC (1992) Element-specific chromatographic detection by atomic emission spectroscopy. In: ACS symposium series, ACS 479, Washington

    Google Scholar 

  17. Rolfes J, Andersson JT (2001) Determination of alkylphenols after derivatization to ferrocenecarboxylic acid esters with gas chromatography-atomic emission detection. Anal Chem 73:3073–3082

    Article  CAS  Google Scholar 

  18. Chernetsova ES, Revelskii AI, Durst D, Revelskii IA (2005) Determination of the elemental composition of hydrocarbon mixtures by gas chromatography with atomic emission detection: increasing the accuracy. J Anal Chem 60:855–859

    Article  CAS  Google Scholar 

  19. Product information, IMT

    Google Scholar 

  20. Engel U, Bilgic AM, Haase O, Voges E, Broekart JAC (2000) A Microwave-induced plasma based on microstrip technology and its use for the atomic Emission spectrophotometric determination of mercury with the aid of the cold-vapor technique. Anal Chem 72:193–197

    Article  CAS  Google Scholar 

  21. Eijkel JCT, Stoeri H, Manz A (2000) A dc microplasma on a chip employed as an optical emission detector for gas chromatography. Anal Chem 72:2547–2552

    Article  CAS  Google Scholar 

  22. Rosenkranz B, Breer CB, Buscher W, Bettmer J, Cammann K (1997) The plasma emission detector – a suitable detector for speciation and sum parameter Analysis. JAAS 12:993–996

    CAS  Google Scholar 

  23. Rosenkranz B, Quevauviller P, Bettmer J (1999) Development of an automated speciation analyzer. Am Lab 10:17–24

    Google Scholar 

  24. Rosenkranz B, Bettmer J (2002) Rapid separation of elemental species by multicapillary GC. Anal Bioanal Chem 373:461–465

    Article  CAS  Google Scholar 

  25. Atomic Emission Detector, JAS AED Product brochure, 2009, joint analytical systems GmbH

    Google Scholar 

  26. Bouyssiere B, Szpunar J, Lobinski R (2002) Gas chromatography with inductively coupled plasma mass spectrometric detection in speciation analysis. Spectrochim Acta B 57:805–828

    Article  Google Scholar 

  27. Feldmann J, Gruemping R, Hirner AV (1994) Determination of volatile metal and metalloid compounds in gases from domestic waste deposits with GC-ICP MS. Fresenius J Anal Chem 350:228–234

    Article  CAS  Google Scholar 

  28. Krupp EM, Pécheyran C, Pinaly H, Motelica-Heino M, Koller D, Young SMM, Brenner IB, Donard OFX (2001) Isotopic precision for a lead species (PbEt4) using capillary gas chromatography coupled to inductively coupled plasma-multicollector mass spectrometry. Spectrochim Acta B 56:1233–1240

    Article  Google Scholar 

  29. Easter RN, Caruso JA, Vonderheide AP (2010) Recent developments and novel applications in GC-ICPMS. J Anal At Spectrom 25:493–502

    Article  CAS  Google Scholar 

  30. Story WC, Caruso JA (1993) Gas-chromatographic determination of phosphorus, sulphur and halogens using a water-cooled torch with reduced-pressure helium microwave-induced plasma-mass spectrometry. J Anal At Spectrom 8:571–575

    Article  CAS  Google Scholar 

  31. Read P, Beere H, Ebdon L, Leizers M, Hetheridge M, Rowland S (1997) Gas chromatography-microwave-induced plasma mass spectrometry (GC-MIP-MS): a multi-element analytical tool for organic geochemistry. Org Geochem 26:11–17

    Article  CAS  Google Scholar 

  32. Götz A, Heumann KG (1988) Determination of heavy metals (Pb, Cd, Cu, Zn, Cr) in sedimentary reference materials with IDMS: total concentration and aqua regia soluble portion. Fresenius J Anal Chem 332:640–644

    Article  Google Scholar 

  33. Rodriguez-González P, Alonso JIG (2010) Recent advances in isotope dilution analysis for chemical speciation. J Anal At Sprectrom 25:239–259

    Article  Google Scholar 

  34. Poperechna N, Heumann KG (2005) Species-specific GC/ICP-IDMS for trimethyllead determinations in biological and environmental samples. Anal Chem 77:511–516

    Article  CAS  Google Scholar 

  35. Heilmann J, Heumann KG (2008) Development of a species-unspecific isotope dilution GC-ICPMS method for possible routine quantification of sulfur species in petroleum products. Anal Chem 80:1952–1961

    Article  CAS  Google Scholar 

  36. Van DN, Bui TTX, Tesfalidet S (2008) The transformation of phenyltin species during sample preparation of biological tissues using multi-isotope spike SSID-GC-ICPMS. Anal Bioanal Chem 392:737–747

    Article  Google Scholar 

  37. Köstner J, Hippler J, Diaz-Bone RA, Hirner AV (2005) Parallel ICP-MS and EI-MS detection after GC separation as a unique tool for simultaneous identification and quantification of volatile heteroatomic organic compounds. J Anal At Spectrom 20:996–999

    Article  Google Scholar 

  38. Hollmann M, Boertz J, Dopp E, Hippler J, Hirner AV (2010) Parallel on-line detection of a methylbismuth species by hyphenated GC/EI-MS/ICP-MS techniques as evidence for bismuth methylation by human heptic cells. Metallomics 2:52–56

    Article  CAS  Google Scholar 

  39. Feldmann J (1997) Summary of a calibration method for the determination of volatile metal(loid) compounds in environmental gas samples by using gas chromatography–inductively coupled plasma mass spectrometry. J Anal At Spectrom 12:1069–1076

    Article  CAS  Google Scholar 

  40. Richardson DD, Caruso JA (2007) Screening organophosphorus nerve agent degradation products in pesticide mixtures by GC-ICPMS. Anal Bioanal Chem 389:679–682

    Article  CAS  Google Scholar 

  41. Ellis J, Shah M, Kubachka KM, Caruso JA (2007) Determination of organophosphorus fire retardants and plasticizers in wastewater samples using MAE-SPME with GC-ICPMS and GC-TOFMS detection. J Environ Monit 12:1329–1336

    Article  Google Scholar 

  42. Xiao Q, Hu B, Duan J, He M, Zu W (2007) Analysis of PBDEs in soil dust, spiked lake water, and human serum samples by hollow fiber-liquid phase microextraction combined with GC-ICP-MS. J Am Soc Mass Spectrom 18:1740–1748

    Article  CAS  Google Scholar 

  43. Amrani A, Sessions AL, Adkins JF (2009) Compound-specific delta S-34 analysis of volatile organics by coupled GC/multicollector-ICPMS. Anal Chem 81:9027–9034

    Article  CAS  Google Scholar 

  44. Pecheyran C, Quetel CR, Lecuyer FMM, Donard OFX (1998) Simultaneous determination of volatile metal (Pb, Hg, No, Sn, In, Ga) and nonmetal species (Se, P, As) in different atmospheres by cryofocusing and detection by ICPMS. Anal Chem 70:2639–2645

    Article  CAS  Google Scholar 

  45. Monperrus M, Martin-Doimeadios RCR, Scancar J, Amouroux D, Donard OFX (2003) Simultaneous sample preparation and species-specific isotope dilution mass spectrometry analysis of monomethylmercury and tributyltin in a certified oyster tissue. Anal Chem 75:4095–4102

    Article  CAS  Google Scholar 

  46. Kumar SJ, Tesfalidet S, Snell JP, Van DN, Frech W (2004) A simple method for synthesis of organotin species to investigate extraction procedures in sediments by isotope dilution-gas chromatography-inductively coupled plasma mass spectrometry – Part 2. Phenyltin species. J Anal At Specrom 19:368–372

    Article  CAS  Google Scholar 

  47. Inagaki K, Takatsu A, Watanabe T, Kuroiwa T, Aoyagi Y, Okamoto K (2004) Certification of mono-, di-, and tributyltin compounds in marine sediment certified reference material by species-specific isotope dilution mass spectrometric analysis using synthesized Sn-118-labeled butyltins. Anal Bioanal Chem 378:1265–1270

    Article  CAS  Google Scholar 

  48. Encinar JR, Gonzalez PR, Alonso JIG, Sanz-Medel A (2001) Evaluation of extraction techniques for the determination of butyltin compounds in sediments using isotope dilution-GC/ICPMS with Sn-118 and Sn-119-enriched species. Anal Chem 74:270–281

    Article  Google Scholar 

  49. Encinar JR, Villar MIM, Santamaria VG, Alonso JIG, Sanz-Medel A (2001) Simultaneous determination of mono-, di-, and tributyltin in sediments by isotope dilution analysis using gas chromatography-ICPMS. Anal Chem 73:3174–3180

    Article  CAS  Google Scholar 

  50. Staniszewska M, Radke B, Namiesnik J, Bolalek J (2008) Analytical methods and problems related to the determination of organotin compounds in marine sediments. Int J Eviron Anal Chem 11:747–774

    Article  Google Scholar 

  51. Cai JB, Ouyang G, Gong Y, Pawliszyn J (2008) Simultaneous sampling and analysis for vapor mercury in ambient air using needle trap coupled with gas chromatography-mass spectrometry. J Chromatogr A 1213:19–24

    Article  CAS  Google Scholar 

  52. Hippler J, Hoppe HW, Mosel F, Rettenmeier AW, Hirner AV (2009) Comparative determination of methyl mercury in whole blood samples using GC-ICP-MS and GC-MS techniques. J Chromatogr B 877:2465–2470

    Article  CAS  Google Scholar 

  53. Martin-Doimeadios RCR, Krupp E, Amouroux D, Donard OFX (2002) Application of isotopically labeled methylmercury for isotope dilution analysis of biological samples using gas chromatography/ICPMS. Anal Chem 74:2505–2512

    Article  Google Scholar 

  54. Martin-Doimeadios RCR, Monperrus M, Krupp E, Amouroux D, Donard OFX (2003) Using speciated isotope dilution with GC-inductively coupled plasma MS to determine and unravel the artificial formation of monomethylmercury in certified reference sediments. Anal Chem 75:3202–3211

    Article  Google Scholar 

  55. Qvarnstrom J, Lambertsson L, Havarinasab S, Hultman P, Frech W (2003) Determination of methylmercury, ethylmercury, and inorganic mercury in mouse tissues, following administration of thimerosal, by species-specific isotope dilution GC-inductively coupled plasma-MS. Anal Chem 75:4120–4124

    Article  Google Scholar 

  56. Inagaki K, Kuroiwa T, Narukawa T, Yarita T, Takatsu A, Okamoto K, Chiba K (2008) Certification of methylmercury in cod fish tissue certified reference material by species-specific isotope dilution mass spectrometric analysis. Anal Bioanal Chem 391:2047–2054

    Article  CAS  Google Scholar 

  57. Gelaude I, Dams R, Resano M, Vanhaecke F, Moens L (2002) Direct determination of methylmercury and inorganic mercury in biological materials by solid sampling-electrothermal vaporization-inductively coupled plasma-isotope dilution-mass spectrometry. Anal Chem 74:3833–3842

    Article  CAS  Google Scholar 

  58. Demuth N, Heumann KG (2001) Validation of methylmercury determinations in aquatic systems by alkyl derivatization methods for GC analysis using ICP-IDMS. Anal Chem 73:4020–4027

    Article  CAS  Google Scholar 

  59. Baxter DC, Rodushkin I, Engstrom E, Klockare D, Waara H (2007) Methylmercury measurement in whole blood by isotope-dilution GC-ICPMS with 2 sample preparation methods. Clin Chem 53:111–116

    Article  CAS  Google Scholar 

  60. Arroyo Abad U, Mattusch J, Mothes S, Möder M, Wennrich R, Elizalde-González MP, Matysik F-M (2010) Detection of arsenic-containing hydrocarbons in canned cod liver tissue. Talanta 82:38–43

    Article  CAS  Google Scholar 

  61. Bueno M, Pannier F (2009) Quantitative analysis of volatile selenium metabolites in normal urine by headspace solid phase microextraction gas chromatography-inductively coupled plasma mass spectrometry. Talanta 78:759–763

    Article  CAS  Google Scholar 

  62. Pinel-Raffaitin P, Pécheyran C, Amouroux D (2008) New volatile selenium and tellurium species in fermentation gases produced by composting duck manure. Atmos Environ 42:7786–7794

    Article  CAS  Google Scholar 

  63. Yang L, Mester Z, Abranko L, Sturgeon RE (2004) Determination of total chromium in seawater by isotope dilution sector field ICPMS using GC sample introduction. Anal Chem 76:3510–3516

    Article  CAS  Google Scholar 

  64. Yabutani T, Motonaka J, Inagaki K, Takatsu A, Yarita T, Chiba K (2008) Simultaneous determination of trimethyl- and triethyllead in urban dust by species-specific isotope dilution/gas chromatography-inductively coupled plasma mass spectrometry. Anal Sci 24:791–794

    Article  CAS  Google Scholar 

  65. Halicz L, Gelman F (2010) High precision determination of bromine isotope ratio by GC-MC-ICPMS. Int J Mass Spectrom 289:167–169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Mattusch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mothes, S., Mattusch, J. (2014). Element-Specific Detection. In: Dettmer-Wilde, K., Engewald, W. (eds) Practical Gas Chromatography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54640-2_10

Download citation

Publish with us

Policies and ethics