Skip to main content
Log in

Kinetics of crude oil combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, thermal characterization and kinetics of Karakus crude oil in the presence of limestone matrix is investigated. Thermogravimetry (TG/DTG) is used to characterize the crude oil in the temperature range of 20-900°C, at 10°C min -1 heating rate using air flow rate of 20 mL min -1. In combustion with air, three distinct reaction regions were identified known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). Five different kinetic methods used to analyze the TG/DTG data to identify reaction parameters as activation energy and Arrhenius constant. On the other hand different f(α) models from literature were also applied to make comparison. It was observed that high temperature oxidation temperature (HTO) activation energy of Karakus crude oil is varied between 54.1 and 86.1 kJ mol -1, while low temperature oxidation temperature (LTO) is varied between 6.9 and 8.9 kJ mol -1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M Ranjbar G Pusch (1991) J. Anal. Appl. Pyrolysis 20 185 Occurrence Handle1:CAS:528:DyaK3MXltl2htrY%3D

    CAS  Google Scholar 

  2. J. H. Bae, Soc. Pet. Eng. AIME, (1977) 211.

  3. S Vossoughi GW Bartlett (1982) Soc. Pet. Eng. AIME 11073 1

    Google Scholar 

  4. MV Kök (1993) Thermochim. Acta 214 315

    Google Scholar 

  5. H Barkia L Belkir SAA Jayaweera (2003) J. Therm. Anal. Cal. 7 97

    Google Scholar 

  6. MV Kök (2001) J. Therm. Anal. Cal. 64 1319

    Google Scholar 

  7. MLA Goncalves MAG Teixeira RCL Pereira RLP Mercury JR Matos (2001) J. Therm. Anal. Cal. 64 697 Occurrence Handle1:CAS:528:DC%2BD3MXkslWlurw%3D

    CAS  Google Scholar 

  8. MV Kök C Keskin (2001) Thermochim. Acta 369 143

    Google Scholar 

  9. H Laux T Butz I Rahimian (2000 ) Oil Gas Sci. Technol. 55 315 Occurrence Handle1:CAS:528:DC%2BD3cXltFOnsrY%3D

    CAS  Google Scholar 

  10. ABA Lukyaa R Hughes A Millington D Price (1994) Trans. Inst. Chem. Eng. 72 163 Occurrence Handle1:CAS:528:DyaK2cXktlykurg%3D

    CAS  Google Scholar 

  11. MV Kök G Pokol C Keskin J Madarász S Bagci (2004) J. Therm. Anal. Cal. 75 781 Occurrence Handle10.1023/B:JTAN.0000027174.56023.fc

    Article  Google Scholar 

  12. MV Kök G Pokol C Keskin J Madarász S Bagci (2004) J. Therm. Anal. Cal. 76 247 Occurrence Handle10.1023/B:JTAN.0000027823.17643.5b

    Article  Google Scholar 

  13. MV Kök (2005 ) J. Therm. Anal. Cal. 79 175 Occurrence Handle10.1007/s10973-004-0581-6

    Article  Google Scholar 

  14. D Dollimore TA Evans YF Lee FW Wilburn (1992) Thermochim. Acta 198 249 Occurrence Handle10.1016/0040-6031(92)85081-6 Occurrence Handle1:CAS:528:DyaK38XktlCms74%3D

    Article  CAS  Google Scholar 

  15. MV Kök MR Pamir (2000) J. Anal. Appl. Pyrolysis 55 185

    Google Scholar 

  16. K Rajeshwar (1981) Thermochim. Acta 45 253 Occurrence Handle10.1016/0040-6031(81)85086-1 Occurrence Handle1:CAS:528:DyaL3MXksVGlu78%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kök M V.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kök, M.V., Acar, C. Kinetics of crude oil combustion . J Therm Anal Calorim 83, 445–449 (2006). https://doi.org/10.1007/s10973-005-7152-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7152-3

Keywords

Navigation