Skip to main content
Log in

Time-temperature-transformation analysis of an acrylic-amino resin system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The curing behaviour of a thermosetting acrylic-amino-formaldehyde resin matrix has been investigated by rheological, thermogravimetric, and thermomechanical analysis. The time-temperature-transformation (TTT) diagram of the solventless resin matrix has been constructed. The gelation curve could be fitted with a power-function of T gel=118.14·t gel -01238. With the help of this function the conditions for gelation can be calculated, and storability of the matrix can be predicted. The onset temperature of thermooxydative decomposition is 220°C, and the maximum loss of mass belonging to this temperature was found to be 16.3%, corresponding to the ultimate conversion of curing. From iso-Tcure diagrams determined by isothermal thermogravimetric analysis, the iso-curing time (iso-t cure) and iso-mass loss curves of the TTT diagram have been constructed. The iso-Tcure diagrams determined by TMA measurements, served the construction of the iso-Tcure and iso-glass transition temperature (iso-T g) diagrams. The T g of the fully cured system (T g∞) was found to be 30°C. The iso-Tg line of 30°C represents the ultimate conversion of the cured system, up to which no degradation takes place. This curve runs below the ultimate conversion determined by thermogravimetric measurements, meaning that above 160°C decomposition takes place simultaneously with curing reactions as supported by the increasing tangent of the straight lines fitted to the last section of thermogravimetric iso-T cure diagrams. The T g of the matrix before the cure (T g0) is less than 0°C. This means that the system is in its rubbery physical state during the curing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Gillham and S. Gan, J. Appl. Polym. Sci., 37 (1989) 802.

    Google Scholar 

  2. J. K. Gillham, Polym. Mater. Sci. Eng. Proc. ACS Div. Polym. Mater. Sci., 63 (1990) 747.

    Google Scholar 

  3. J. K. Gillham, Annu. Tech. Conf. ANTEC Conf. Proc., 2 (1997) 2164.

    Google Scholar 

  4. J. K. Gillham, Polym. Int., 44 (1997) 262.

    Article  Google Scholar 

  5. T. Provder and C. M. Neag, Polym. Mater. Sci. Eng. Proc. ACS Div. Polym. Mater. Sci., 69 (1993) 148.

    Google Scholar 

  6. A. Van Hemelrijck and B. Van Mele, J. Thermal Anal., 49 (1997) 437.

    Google Scholar 

  7. J. A. Brydson, Plastics Materials 5th Ed. Butterworths, London 1989, p. 374.

    Google Scholar 

  8. W. J. Mckillip, Ind. Eng. Chem. Prod. Res. Dev., 13 (1974) 197.

    Google Scholar 

  9. H. Warson, The application of synthetic resin emulsion, Ernest Benn Ltd., London, 1972, p. 215.

    Google Scholar 

  10. B. Eling, Coatings in The Polyurethanes Book, John Wiley and Sons Ltd., New York, 2002, p. 363.

    Google Scholar 

  11. H. J. Lanson, Amino Resins, Encyclopedia of Polymer Science and Engineering, 2nd Ed., Wiley, Chichester Vol. 1, 1998, pp. 644–679.

    Google Scholar 

  12. C. H. Hare, J. Prot. Coat. Linings, 11 (1994) 133.

    Google Scholar 

  13. W. H. Brown, Off. Dig., 36 (1964) 92.

    Google Scholar 

  14. A. Mercurio, Off. Dig., 36 (1964) 135.

    Google Scholar 

  15. Z. W. Wicks, F. N. Jones and S. P. Pappas, Organic Coatings: Science and Technology, 2nd Ed. Vol. 1, Wiley Intersc., New York, 1999, p. 165.

    Google Scholar 

  16. A. Berge, Prog. Org. Coat., 5 (1979) 171.

    Google Scholar 

  17. R. Saxon, J. Appl. Polym. Sci., 8 (1988) 325.

    Article  Google Scholar 

  18. W. S. Zimmt, Chem. Tech., 11 (1981) 681.

    Google Scholar 

  19. W. J. Blank, J. Coat. Technol., 54, 687 (1982) p. 28.

    Google Scholar 

  20. B. B. Kine, Encycl. Chem. Techn. Kirk-Othmer 3rd Ed. Vol. 1, Wiley Intersc., New York, 1978, p. 386.

    Google Scholar 

  21. S. Takahashi and N. Okushi, J. Appl. Polym. Sci., 36 (1988) 613.

    Article  Google Scholar 

  22. M. Takayanagi, J. Appl. Polym. Sci., 28 (1983) 2840.

    Google Scholar 

  23. S. Takahashi, J. Appl. Polym. Sci., 28 (1983) 2847.

    Article  Google Scholar 

  24. R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 74 (2003) 29.

    Article  Google Scholar 

  25. V. Vargha and Gy. Kiss, J. Therm. Anal. Cal., 76 (2004) 295.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargha, V., Körmendy, Z. Time-temperature-transformation analysis of an acrylic-amino resin system. J Therm Anal Calorim 79, 195–203 (2005). https://doi.org/10.1007/s10973-004-0584-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-004-0584-3

Navigation