Skip to main content
Log in

Impact of electron–hole recombination mechanism on the photocatalytic performance of ZnO in water treatment: A review

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

One of the most popular standard benchmark photocatalysts in the water treatment and environmental applications fields is zinc oxide (ZnO). Nevertheless, the total photocatalytic efficacy is limited by ZnO’s high band gap and the significant recombination of photogenerated charge carriers, particularly in its nano size. This can be further circumvented by hybridizing ZnO with a material that has a narrow band gap, such as metallic, non-metallic, carbon-based, or polymeric-based, to change its electronic band structure and other pertinent features. The use of ZnO-based photocatalyst in wastewater treatment shows a lot of potential as an effective and long-lasting oxidation technique. To increase photocatalytic efficiency, ZnO photocatalysts can be prepared in a variety of ways and modified via doping. In the present review, we assess recent studies on the creation of ZnO-based photocatalysts for the treatment of water using a variety of preparation methods based on electron–hole generation and recombination. The majority of development strategies and research on attaining the best possible photocatalysis performance in high-yield degradation with related factors are discussed, and the primary reasons for increased efficiency are explained. We consider areas where ZnO-based photocatalysts for water treatment could be improved. Finally, there is also a discussion of the prospects and challenges in this exciting field. Our evaluation aims to assist researchers in creating photocatalysts for water treatment that are both affordable and highly effective.

Graphical Abstract

Highlights

  • A variety of preparation techniques have been used to employ metallic and non-metallic doped zinc oxide (ZnO) based photocatalysts broadly in the field of water treatment.

  • Total photocatalytic efficacy is limited by ZnO’s high band gap and the significant recombination of photogenerated charge carriers, particularly in its nano size.

  • Harmful organic and inorganic contamination in water can likely be resolved by adjusting the initial pollutant level, pH, and intensity of light.

  • Hybridizing ZnO with a material that has a narrow band gap, such as metallic, non-metallic, carbon-based, or polymeric-based, to change its electronic band structure and other pertinent features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chellam S, Clifford DA (2002) Physical–chemical treatment of groundwater contaminated by leachate from surface disposal of uranium tailings. J Environ Eng 128(10):942–952

    Article  CAS  Google Scholar 

  2. Wang H, Liu R, Qu J, Fan M, Li H (2009) Pilot‐scale treatment of waste‐water from carbon production by a combined physical–chemical process. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84(7):966–971

    CAS  Google Scholar 

  3. Radjenović J, Petrović M, Ventura F, Barceló D (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res 42(14):3601–3610

    Article  PubMed  Google Scholar 

  4. Sharma K, Hasija V, Malhotra M, Verma PK, Khan AAP, Thakur S, Raizada P (2024) A review of CdS-based S-scheme for photocatalytic water splitting: synthetic strategy and identification techniques. Int J Hydrogen Energy 52:804–818

    Article  CAS  Google Scholar 

  5. Kang GD, Cao YM (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46(3):584–600

    Article  CAS  PubMed  Google Scholar 

  6. Khan AAP, Sudhaik A, Raizada P, Khan A, Rub MA, Azum N, Asiri AM (2023) AgI coupled SiO2@ CuFe2O4 novel photocatalytic nano-material for photo-degradation of organic dyes. Catal Commun 179:106685

    Article  CAS  Google Scholar 

  7. Ayyildiz O, Peters RW (2004) Synergy of combined sonication and vapor stripping treatment in the removal of PCE from water. Fresenius Environ Bull 13(12):1515–1517

    CAS  Google Scholar 

  8. Malhotra M, Sudhaik A, Raizada P, Ahamad T, Nguyen VH, Van Le Q, Singh P (2023) An overview on cellulose-supported photocatalytic materials for the efficient removal of toxic dyes. Ind Crops Prod 202:117000. ‏

    Article  CAS  Google Scholar 

  9. Li Y, Xie W, Hu X, Shen G, Zhou X, Xiang Y, Fang P (2010) Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO2 and ZnO. Langmuir 26(1):591–597

    Article  PubMed  Google Scholar 

  10. Mondal C, Pal J, Ganguly M, Sinha AK, Jana J, Pal T (2014) A one pot synthesis of Au–ZnO nanocomposites for plasmon-enhanced sunlight driven photocatalytic activity. N J Chem 38(7):2999–3005

    Article  CAS  Google Scholar 

  11. Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun 48(23):2858–2860

    Article  CAS  Google Scholar 

  12. Kumar SG, Rao KK (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5(5):3306–3351

    Article  CAS  Google Scholar 

  13. Li J, Wu N (2015) Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol 5(3):1360–1384

    Article  CAS  Google Scholar 

  14. Hunge YM, Yadav AA, Kang SW, Mohite BM (2023) Role of nanotechnology in photocatalysis application. Recent Pat Nanotechnol 17(1):5–7

    Article  CAS  PubMed  Google Scholar 

  15. Dhull P, Sudhaik A, Raizada P, Thakur S, Nguyen VH (2023) Van Le Q, Kumar N, Khan AAP, Marwani HM, Selvasembian R, Singh, P (2023) An overview on ZnO-based sonophotocatalytic mitigation of aqueous phase pollutants. Chemosphere 333:138873

    Article  CAS  PubMed  Google Scholar 

  16. Hunge YM, Yadav AA, Kang SW, Lim SJ, Kim H (2023) Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production. J Photochem Photobiol A Chem 434:114250

    Article  CAS  Google Scholar 

  17. Sharma K, Kumar A, Ahamad T, Van Le Q, Raizada P, Singh A, Singh P (2023) Sulphur vacancy defects engineered metal sulfides for amended photo (electro) catalytic water splitting: a review. J Mater Sci Technol 152:50–64

    Article  CAS  Google Scholar 

  18. Ali RS, Sharba KS, Jabbar AM, Chiad SS, Abass KH, Habubi NF (2020) Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications. NeuroQuantology 18(1):26

    Article  Google Scholar 

  19. Hunge YM, Yadav AA, Kang SW, Kim H (2022) Facile synthesis of multitasking composite of Silver nanoparticle with Zinc oxide for 4-nitrophenol reduction, photocatalytic hydrogen production, and 4-chlorophenol degradation. J Alloy Compd 928:167133

    Article  CAS  Google Scholar 

  20. Kale V, Hunge YM, Kamble SA, Deshmukh M, Bhoraskar V S, Mathe VL (2021) Modification of energy level diagram of nano-crystalline ZnO by its composites with ZnWO4 suitable for sunlight assisted photo catalytic activity. Mater Today Commun 26:102101

    Article  CAS  Google Scholar 

  21. Hunge YM, Yadav AA, Mathe VL (2019) Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem Phys Lett 731:136582

    Article  CAS  Google Scholar 

  22. Bharti J, Kumar JS, Kumar SS, V, Kumar A, Kumar D (2022) A review on the capability of zinc oxide and iron oxides nanomaterials, as a water decontaminating agent: adsorption and photocatalysis. Appl Water Sci 12(3):46

    Article  CAS  Google Scholar 

  23. Mahadik MA, Shinde SS, Hunge YM, Mohite VS, Kumbhar SS, Moholkar AV, Bhosale CH (2014) UV assisted photoelectrocatalytic oxidation of phthalic acid using spray deposited Al doped zinc oxide thin films. J Alloy Compd 611:446–451

    Article  CAS  Google Scholar 

  24. Gomez-Solís C, Ballesteros JC, Torres-Martínez LM, Juárez-Ramírez I, Torres LD, Zarazua-Morin ME, Lee SW (2015) Rapid synthesis of ZnO nano-corncobs from Nital solution and its application in the photodegradation of methyl orange. J Photochem Photobiol A Chem 298:49–54

    Article  Google Scholar 

  25. Yadav AA, Hunge YM, Kang SW (2021) Porous nanoplate-like tungsten trioxide/reduced graphene oxide catalyst for sonocatalytic degradation and photocatalytic hydrogen production. Surf Interfaces 24:101075

    Article  CAS  Google Scholar 

  26. Yadav AA, Hunge YM, Kang SW, Fujishima A, Terashima C (2023) Enhanced photocatalytic degradation activity using the V2O5/RGO composite. Nanomaterials 13(2):338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasquarelli RM, Ginley DS, O’Hayre R (2011) Solution processing of transparent conductors: from flask to film. Chem Soc Rev 40(11):5406–5441

    Article  CAS  PubMed  Google Scholar 

  28. Jagadish C, & Pearton SJ (eds) (2011) Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Elsevier‏

  29. Hunge YM, Yadav AA, Kang SW (2022) Photocatalytic degradation of eriochrome black-T using BaWO4/MoS2 Composite. Catalysts 12(10):1290

    Article  CAS  Google Scholar 

  30. Ma X, Wu Y, Lv Y, Zhu Y (2013) Correlation effects on lattice relaxation and electronic structure of ZnO within the GGA+ U formalism. The. J Phys Chem C 117(49):26029–26039

    Article  CAS  Google Scholar 

  31. Tuama AN, Abbas KH, Hamzah MQ, Mezan SO, Jabbar AH, Agam MA (2020) An overview on characterization of silver/cuprous oxide nanometallic (Ag/Cu2O) as visible light photocatalytic. Int J Adv Sci Technol 29(3):5008–5018

    Google Scholar 

  32. Abass KH, Mohammed MK (2019) Fabrication of ZnO: Al/Si solar cell and enhancement its efficiency via Al-doping. Nano Biomed Eng 11(2):170–177

    Article  CAS  Google Scholar 

  33. Ma Z, Ren F, Ming X, Long Y, Volinsky AA (2019) Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12(1):196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hunge YM, Yadav AA, Mahadik MA, Bulakhe RN, Shim JJ, Mathe VL, Bhosale CH (2018) Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Optical Mater 76:260–270

    Article  CAS  Google Scholar 

  35. Abebe B, Murthy HA, Amare E (2020) Enhancing the photocatalytic efficiency of ZnO: Defects, heterojunction, and optimization. Environ Nanotechnol Monit Manag 14:100336

    Google Scholar 

  36. Mutalib AA, Jaafar NF (2022) ZnO photocatalysts applications in abating the organic pollutant contamination: a mini review. Total Environ ResThemes 3-4:100013

    Article  Google Scholar 

  37. Abdul Hamid SB, Teh SJ, Lai CW (2017) Photocatalytic water oxidation on ZnO: a review. Catalysts 7(3):93

    Article  Google Scholar 

  38. Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat 41(1-3):131–169

    Article  CAS  Google Scholar 

  39. Liu B, Zhao X, Terashima C, Fujishima A, Nakata K (2014) Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys Chem Chem Phys 16(19):8751–8760

    Article  CAS  PubMed  Google Scholar 

  40. Coronado JM, Fresno F, Hernández-Alonso MD, Portela R (eds) (2013) Design of advanced photocatalytic materials for energy and environmental applications. vol 71 Springer, London‏

  41. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570

    Article  CAS  PubMed  Google Scholar 

  42. Moosavi F, Neri G (2023) Effect of Pb doping on the structural, optical and electrical properties of sol–gel ZnO nanoparticles. Discov Mater 3(1):30

    Article  Google Scholar 

  43. Wu C, Shen L, Zhang YC, Huang Q (2011) Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater Lett 65(12):1794–1796

    Article  CAS  Google Scholar 

  44. Barick KC, Singh S, Aslam M, Bahadur D (2010) Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous Mesoporous Mater 134(1-3):195–202

    Article  CAS  Google Scholar 

  45. Thennarasu G, Sivasamy A (2013) Metal ion doped semiconductor metal oxide nanosphere particles prepared by soft chemical method and its visible light photocatalytic activity in degradation of phenol. Powder Technol 250:1–12

    Article  CAS  Google Scholar 

  46. Sharma DK, Shukla S, Sharma KK, Kumar V (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings 49:3028–3035

  47. Yang Y, Li Y, Zhu L, He H, Hu L, Huang J, Ye Z (2013) Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. Nanoscale 5(21):10461–10471

    Article  CAS  PubMed  Google Scholar 

  48. Sanakousar FM, Vidyasagar CC, Jiménez-Pérez VM, Prakash K (2022) Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mater Sci Semicond Process 140:106390

    Article  CAS  Google Scholar 

  49. Zong X, Sun C, Yu H, Chen ZG, Xing Z, Ye D, Lu GQ(M), Li X, Wang L (2013) J Phys Chem C 117(10):4937–4942

    Article  CAS  Google Scholar 

  50. Sun L, Shao Q, Zhang Y, Jiang H, Ge S, Lou S, Guo Z (2020) N self-doped ZnO derived from microwave hydrothermal synthesized zeolitic imidazolate framework-8 toward enhanced photocatalytic degradation of methylene blue. J colloid interface Sci 565:142–155

    Article  CAS  PubMed  Google Scholar 

  51. Ferrari-Lima AM, De Souza RP, Mendes SS, Marques RG, Gimenes ML, Fernandes-Machado NRC (2015) Photodegradation of benzene, toluene and xylenes under visible light applying N-doped mixed TiO2 and ZnO catalysts. Catal Today 241:40–46

    Article  CAS  Google Scholar 

  52. Wu C (2014) Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Appl Surf Sci 319:237–243

    Article  CAS  Google Scholar 

  53. Pan H, Yi JB, Shen L, Wu RQ, Yang JH, Lin JY, Yin JH (2007) Room-temperature ferromagnetism in carbon-doped ZnO. Phys Rev Lett 99(12):127201

    Article  CAS  PubMed  Google Scholar 

  54. Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ, Kwong DL (2007) p-type conduction in unintentional carbon-doped ZnO thin films. Appl Phys Lett 91(7):072101.‏

  55. Shen G, Cho JH, Yoo JK, Yi GC, Lee CJ (2005) Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. J Phys Chem B 109(12):5491–5496

    Article  CAS  PubMed  Google Scholar 

  56. Hamzah MQ, Agam MA, Tuama AN, Jameel MH (2023). Preparation and characterization of polystyrene nanosphere. In: AIP Conference Proceedings vol 2475 no 1 AIP Publishing

  57. Mezan SO, Jabbar AH, Hamzah MQ, Tuama AN, Hasan NN, Roslan MS, Agam MA (2019) Synthesis, characterization, and properties of polystyrene/SiO2 nanocomposite via sol-gel process. In: AIP Conference Proceedings vol 2151 no 1 AIP Publishing‏‏

  58. Jabbar AH (2019) Enhanced bioactivity of polystyrene-silver nanocomposite (PS/Ag NCs)-an antimicrobial study“. AIP Conf Proc 2151(1):020002

    Article  Google Scholar 

  59. Mario J, Goran S, Darija O, Fredi F (2011) Effects of speed, agility, quickness training method on power performance in elite soccer players. J Strength Cond Res 255:1285–1292

    Google Scholar 

  60. Roy N, Chakraborty S (2021) ZnO as photocatalyst: An approach to waste water treatment. Mater Today: Proc 46:6399–6403

    CAS  Google Scholar 

  61. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MABH, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3:231–242

    Article  CAS  Google Scholar 

  62. Zaidi Z, Siddiqui SI, Fatima B, Chaudhry SA (2019) Synthesis of ZnO nanospheres for water treatment through adsorption and photocatalytic degradation: modelling and process optimization. Mater Res Bull 120:110584

    Article  CAS  Google Scholar 

  63. Baruah S, K Pal S, Dutta J (2012) Nanostructured zinc oxide for water treatment. Nanosci Nanotechnol Asia 2(2):90–102

    Article  CAS  Google Scholar 

  64. Tuama AN, Al-Bermany E, Alnayli RS, Abass KH, Abdali K, Jameel MH (2024) A critical review of the evaluation of Sio2-incorporated Tio2 nanocomposite for photocatalytic activity. Silicon 16:2323–2340

    Article  CAS  Google Scholar 

  65. Calzada LA, Castellanos R, García LA, Klimova TE (2019) TiO2, SnO2 and ZnO catalysts supported on mesoporous SBA-15 versus unsupported nanopowders in photocatalytic degradation of methylene blue. Microporous Mesoporous Mater 285:247–258

    Article  CAS  Google Scholar 

  66. Jameel MH, Mayzan MZHB, Roslan MSB, Agam MAB, Jabbar AH, Badi KM, Tuama AN (2024) Bandgap engineering and tuning of electronic and optical properties of hetero-atoms-doped-graphene composites by density functional quantum computing for photocatalytic applications. Catalysis Lett 1–12‏‏

  67. Seo YS, Oh SG (2019) Controlling the recombination of electron–hole pairs by changing the shape of ZnO nanorods via sol-gel method using water and their enhanced photocatalytic properties. Korean J Chem Eng 36:2118–2124

    Article  CAS  Google Scholar 

  68. Meenakshi G, Sivasamy A (2022) Enhanced photocatalytic activities of CeO2@ ZnO core-shell nanostar particles through delayed electron hole recombination process. Colloids Surf A: Physicochem Eng Asp 645:128920

    Article  CAS  Google Scholar 

  69. Fang J, Fan H, Ma Y, Wang Z, Chang Q (2015) Surface defects control for ZnO nanorods synthesized by quenching and their anti-recombination in photocatalysis. Appl Surf Sci 332:47–54

    Article  CAS  Google Scholar 

  70. Xu Y, Li H, Sun B, Qiao P, Ren L, Tian G, Zhou W (2020) Surface oxygen vacancy defect-promoted electron–hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. Chem Eng J 379:122295

    Article  CAS  Google Scholar 

  71. Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi SM (2020) ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation. Ind Eng Chem Res 59(36):15894–15911

    Article  CAS  Google Scholar 

  72. Saffari R, Shariatinia Z, Jourshabani M (2020) Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications. Environ Pollut 259:113902

    Article  CAS  PubMed  Google Scholar 

  73. Choi J, Chan S, Joo H, Yang H, Ko FK (2016) Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment. Water Res 101:362–369

    Article  CAS  PubMed  Google Scholar 

  74. Danwittayakul S, Jaisai M, Dutta J (2015) Efficient solar photocatalytic degradation of textile wastewater using ZnO/ZTO composites. Appl Catal B Environ 163:1–8

    Article  CAS  Google Scholar 

  75. Lv J, Zhu Q, Zeng Z, Zhang M, Yang J, Zhao M, Sun Z (2017) Enhanced photocurrent and photocatalytic properties of porous ZnO thin film by Ag nanoparticles. J Phys Chem Solids 111:104–109

    Article  CAS  Google Scholar 

  76. Bhatia S, Verma N (2017) Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater Res Bull 95:468–476

    Article  CAS  Google Scholar 

  77. Raj KP, Sadaiyandi K, Kennedy A, Thamizselvi R (2016) Structural, optical, photoluminescence and photocatalytic assessment of Sr-doped ZnO nanoparticles. Mater Chem Phys 183:24–36

    Article  Google Scholar 

  78. Pal M, Bera S, Sarkar S, Jana S (2014) Influence of Al doping on microstructural, optical and photocatalytic properties of sol–gel based nanostructured zinc oxide films on glass. RSC Adv 4(23):11552–11563

    Article  CAS  Google Scholar 

  79. Mittal M, Sharma M, Pandey OP (2014) UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol Energy 110:386–397

    Article  CAS  Google Scholar 

  80. Yi S, Cui J, Li S, Zhang L, Wang D, Lin Y (2014) Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties. Appl Surf Sci 319:230–236

    Article  CAS  Google Scholar 

  81. Amornpitoksuk P, Suwanboon S, Sangkanu S, Sukhoom A, Muensit N, Baltrusaitis J (2012) Synthesis, characterization, photocatalytic and antibacterial activities of Ag-doped ZnO powders modified with a diblock copolymer. Powder Technol 219:158–164

    Article  CAS  Google Scholar 

  82. Dhivya A, Yadav R (2022) An Eco-approach synthesis of undoped and Mn doped ZnO nano-photocatalyst for prompt decoloration of methylene blue dye. Mater Today: Proc 48:494–501

    Google Scholar 

  83. Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156(1-3):194–200

    Article  CAS  PubMed  Google Scholar 

  84. Kuriakose S, Satpati B, Mohapatra S (2014) Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys Chem Chem Phys 16(25):12741–12749

    Article  CAS  PubMed  Google Scholar 

  85. Anandan S, Miyauchi M (2011) Ce-doped ZnO (Ce x Zn 1− x O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu 2+) grafting. Phys Chem Chem Phys 13(33):14937–14945

    Article  CAS  PubMed  Google Scholar 

  86. Sin JC, Lam SM, Satoshi I, Lee KT, Mohamed AR (2014) Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl Catal B Environ 148:258–268

    Article  Google Scholar 

  87. Macías-Sánchez JJ, Hinojosa-Reyes L, Caballero-Quintero AD, De La Cruz W, Ruiz-Ruiz E, Hernández-Ramírez A, Guzmán-Mar JL (2015) Synthesis of nitrogen-doped ZnO by sol–gel method: characterization and its application on visible photocatalytic degradation of 2, 4-D and picloram herbicides. Photochem Photobiol Sci 14:536–542

    Article  PubMed  Google Scholar 

  88. Samadi M, Shivaee HA, Zanetti M, Pourjavadi A, Moshfegh A (2012) Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers. J Mol Catal A: Chem 359:42–48

    Article  CAS  Google Scholar 

  89. Deng H, Xu F, Cheng B, Yu J, Ho W (2020) Photocatalytic CO2 reduction of C/ZnO nanofibers enhanced by an Ni-NiS cocatalyst. Nanoscale 12(13):7206–7213

    Article  CAS  PubMed  Google Scholar 

  90. Tuama AN, Abass KH, Agam MAB (2021) Efficiency enhancement of nano structured Cu2O: Ag/laser etched silicon-thin films fabricated via vacuum thermal evaporation technique for solar cell application. Optik 247:167980

    Article  CAS  Google Scholar 

  91. Ojha DP, Joshi MK, Kim HJ (2017) Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite. Ceram Int 43(1):1290–1297

    Article  CAS  Google Scholar 

  92. Azizi F (2017) Synthesis and characterization of graphene–N-doped TiO 2 nanocomposites by sol–gel method and investigation of photocatalytic activity. J Mater Sci Mater Electron 28:11222–11229

    Article  CAS  Google Scholar 

  93. Hao R, Wang G, Jiang C, Tang H, Xu Q (2017) In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl Surf Sci 411:400–410

    Article  CAS  Google Scholar 

  94. Boyadjiev SI, Kéri O, Bárdos P, Firkala T, Gáber F, Nagy ZK, Szilágyi IM (2017) TiO2/ZnO and ZnO/TiO2 core/shell nanofibers prepared by electrospinning and atomic layer deposition for photocatalysis and gas sensing. Appl Surf Sci 424:190–197

    Article  CAS  Google Scholar 

  95. Abarna B, Preethi T, Karunanithi A, Rajarajeswari GR (2016) Influence of jute template on the surface, optical and photocatalytic properties of sol-gel derived mesoporous zinc oxide. Mater Sci Semicond Process 56:243–250

    Article  CAS  Google Scholar 

  96. Ranjith KS, Manivel P, Rajendrakumar RT, Uyar T (2017) Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem Eng J 325:588–600

    Article  CAS  Google Scholar 

  97. Song Y, Shao P, Tian J, Shi W, Gao S, Qi J, Cui F (2016) One-step hydrothermal synthesis of ZnO hollow nanospheres uniformly grown on graphene for enhanced photocatalytic performance. Ceram Int 42(1):2074–2078

    Article  CAS  Google Scholar 

  98. Ranjbari A, Mokhtarani N (2018) Post treatment of composting leachate using ZnO nanoparticles immobilized on moving media. Appl Catal B: Environ 220:211–221

    Article  CAS  Google Scholar 

  99. Selvam K, Muruganandham M, Muthuvel I, Swaminathan M (2007) The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chem Eng J 128(1):51–57

    Article  CAS  Google Scholar 

  100. Gaya UI, Abdullah AH, Zainal Z, Hussein MZ (2009) Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: Intermediates, influence of dosage and inorganic anions. J Hazard Mater 168(1):57–63

    Article  CAS  PubMed  Google Scholar 

  101. Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F (2014) Incorporated ZnO onto nano clinoptilolite particles as the active centers in the photodegradation of phenylhydrazine. J Ind Eng Chem 20(2):695–704

    Article  CAS  Google Scholar 

  102. Assi N, Mohammadi A, Sadr Manuchehri Q, Walker RB (2015) Synthesis and characterization of ZnO nanoparticle synthesized by a microwave-assisted combustion method and catalytic activity for the removal of ortho-nitrophenol. Desalin Water Treat 54(7):1939–1948

    Article  CAS  Google Scholar 

  103. Sobana N, Swaminathan M (2007) The effect of operational parameters on thephotocatalytic degradation of Acid Red 18 by ZnO. Sep Purif Technol 56(1):101e107

    Article  Google Scholar 

  104. Xie J, Li Y, Zhao W, Bian L, Wei Y (2011) Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder Technol 207(1-3):140–144

    Article  CAS  Google Scholar 

  105. Siuleiman S, Kaneva N, Bojinovaa A, Papazova K, Apostolov A, Dimitrov D (2014) Photodegradation of Orange II by ZnO and TiO2 powders and nanowire ZnO and ZnO/TiO2 thin films. Colloids Surf A Physicochem Eng Asp 460:408e413

    Article  Google Scholar 

  106. Pare B, Jonnalagadda SB, Tomar H, Singh P, Bhagwat VW (2008) ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination 232(1-3):80–90

    Article  CAS  Google Scholar 

  107. Mai FD, Chen CC, Chen JL, Liu SC (2008) Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. J Chromatogr A 1189(1-2):355–365

    Article  CAS  PubMed  Google Scholar 

  108. Sampaio MJ, Lima MJ, Baptista DL, Silva AM, Silva CG, Faria JL (2017) Ag-loaded ZnO materials for photocatalytic water treatment. Chem Eng J 318:95–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Physics, University of Babylon, Iraq, for their support.

Author information

Authors and Affiliations

Authors

Contributions

Alaa Nihad wrote the manuscript, and the other remaining authors have contributed in results analysis. For this paper, all authors reviewed all manuscripts from valuable scientific literature as they summarized the findings of existing literature. So, readers can get an idea about the existing knowledge on the topic without having to read all the published research in the field.

Corresponding author

Correspondence to Alaa Nihad Tuama.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuama, A.N., Alzubaidi, L.H., Jameel, M.H. et al. Impact of electron–hole recombination mechanism on the photocatalytic performance of ZnO in water treatment: A review. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06385-x

Keywords:

Navigation