Skip to main content
Log in

Enhancing thermal safety of hydrophobic silica aerogels by incorporating sodium dodecyl sulfate intercalated layered double hydroxides

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

To enhance the thermal safety and preserve the excellent thermal insulation of hydrophobic silica aerogels (SA), sodium dodecyl sulfate (SDS) intercalated layered double hydroxides (LDH) was incorporated into SA by in situ doping to form SDS-LDH/SA composites. The intercalation modification by SDS extends the layer spacing of LDH and improves the dispersibility of LDH in SA, in favor of the combination between LDH and SA. The physical combination between the SA and SDS-LDH is demonstrated by FTIR analyses. As the content of SDS-LDH rises, the SDS-LDH/SA continues to exhibit a low density (0.11–0.20 g/cm3), low thermal conductivity (<26.8 mW/m/K), and large specific surface area (709.4–839.2 m2/g), ensuring excellent thermal insulation performance. It further finds that the SDS-LDH effectively absorbs heat and inhibits the thermal decomposition of SA. Therein, the onset temperature of thermal decomposition of the SA with 20% SDS-LDH is 114.0 °C higher than that of pure SA. Additionally, it also finds that the gross calorific values of the SDS-LDH/SA decrease with the SDS-LDH content, and all these gross calorific values are lower than that of the pure SA. Hence, SDS intercalated LDH presents significant effects on enhancing the thermal safety of hydrophobic SA without impairing the thermal insulation too much.

Graphical Abstract

Highlights

  • SDS intercalated LDH was incorporated into SA by in-situ doping to form SDS-LDH/SA composites.

  • The intercalation modification by SDS not only increases the interlayer spacing of LDH but also improves the dispersion of LDH in matrix materials.

  • The addition of SDS-LDH has no significant effect on the excellent thermal insulation properties of SA and effectively improves the thermal safety of SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu Z, Lyu J, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano 13(5):5703–5711. https://doi.org/10.1021/acsnano.9b01094

    Article  CAS  PubMed  Google Scholar 

  2. Tao J, Yang F, Wu T, Shi J, Zhao H-B, Rao W (2023) Thermal insulation, flame retardancy, smoke suppression, and reinforcement of rigid polyurethane foam enabled by incorporating a P/Cu-hybrid silica aerogel. Chem Eng J 461:142061. https://doi.org/10.1016/j.cej.2023.142061

    Article  CAS  Google Scholar 

  3. Tang R, Hong W, Srinivasakannan C, Liu X, Wang X, Duan X (2022) A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Sep Purif Technol 281:119950. https://doi.org/10.1016/j.seppur.2021.119950

    Article  CAS  Google Scholar 

  4. Liu Y, Zheng P, Wu H, Zhang Y (2023) Preparation and dynamic moisture adsorption of fiber felt/silica aerogel composites with ultra-low moisture adsorption rate. Constr Build Mater 363:129825. https://doi.org/10.1016/j.conbuildmat.2022.129825

    Article  CAS  Google Scholar 

  5. Zhou W, Fu W, Lv G, Liu J, Peng H, Fang T, Tan X, Chen Z (2023) Preparation and properties of CaCl2·6H2O/silica aerogel composite phase change material for building energy conservation. J Mol Liq 382:121986. https://doi.org/10.1016/j.molliq.2023.121986

    Article  CAS  Google Scholar 

  6. Ma L, Luo D, Hu H, Li Q, Yang R, Zhang S, Li D (2023) Energy performance of a rural residential building with PCM-silica aerogel sunspace in severe cold regions. Energy Build 280:112719. https://doi.org/10.1016/j.enbuild.2022.112719

    Article  Google Scholar 

  7. Li Z, Zhao S, Koebel MM, Malfait WJ (2020) Silica aerogels with tailored chemical functionality. Mater Des 193:108833. https://doi.org/10.1016/j.matdes.2020.108833

    Article  CAS  Google Scholar 

  8. Li Z, Cheng X, Shi L, He S, Gong L, Li C, Zhang H (2016) Flammability and oxidation kinetics of hydrophobic silica aerogels. J Hazard Mater 320:350–358. https://doi.org/10.1016/j.jhazmat.2016.07.054

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Wang Y, Wu X, Liu Q, Li M, Shi L, Cheng X (2023) Surface chemistry, skeleton structure and thermal safety of methylsilyl modified silica aerogels by heat treatment in an argon atmosphere. J Non-Cryst Solids 611:122335. https://doi.org/10.1016/j.jnoncrysol.2023.122335

    Article  CAS  Google Scholar 

  10. Li Z, Huang S, Shi L, Li Z, Liu Q, Li M (2019) Reducing the flammability of hydrophobic silica aerogels by doping with hydroxides. J Hazard Mater 373:536–546. https://doi.org/10.1016/j.jhazmat.2019.03.112

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wu L, Deng X, Deng Y, Wu X, Shi L, Li M, Liu Q, Cheng X, Li Z (2021) Improving the flame retardance of hydrophobic silica aerogels through a facile post-doping of magnesium hydroxide. Adv Powder Technol 32(6):1891–1901. https://doi.org/10.1016/j.apt.2021.03.041

    Article  CAS  Google Scholar 

  12. Sun M, Wang Y, Wang X, Liu Q, Li M, Shulga YM, Li Z (2022) In-situ synthesis of layered double hydroxide/silica aerogel composite and its thermal safety characteristics. Gels 8(9):581. https://doi.org/10.3390/gels8090581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xue T, Fan W, Zhang X, Zhao X, Yang F, Liu T (2021) Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy. Compos Part B Eng 219:108963. https://doi.org/10.1016/j.compositesb.2021.108963

    Article  CAS  Google Scholar 

  14. Zheng Z, Zhao Y, Hu J, Wang H (2020) Flexible, strong, multifunctional graphene oxide/silica-based composite aerogels via a double-cross-linked network approach. ACS Appl Mater Interfaces 12(42):47854–47864. https://doi.org/10.1021/acsami.0c14333

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Hu M, Shen K, Liu Q, Li M, Chen Z, Cheng X, Wu X (2024) Tuning thermal stability and fire hazards of hydrophobic silica aerogels via doping reduced graphene oxide. J Non-Cryst Solids 625:122747. https://doi.org/10.1016/j.jnoncrysol.2023.122747

    Article  CAS  Google Scholar 

  16. Yang K, Liu W, Zhang S, Yu W, Shi J, Lin Z, Zheng Q (2022) Influence of the aggregated structures of layered double hydroxide nanoparticles on the degradation behavior of poly(butyleneadipate-co-terephthalate) composites. Appl Clay Sci 230:106713. https://doi.org/10.1016/j.clay.2022.106713

    Article  CAS  Google Scholar 

  17. Marcu I-C, Pavel OD (2022) Layered double hydroxide-based catalytic materials for sustainable processes. Catalysts 12(8):816. https://doi.org/10.3390/catal12080816

    Article  CAS  Google Scholar 

  18. Sohrabnezhad S, Poursafar Z, Asadollahi A (2020) Synthesis of novel core@shell of MgAl layered double hydroxide @ porous magnetic shell (MgAl-LDH@PMN) as carrier for ciprofloxacin drug. Appl Clay Sci 190:105586. https://doi.org/10.1016/j.clay.2020.105586

    Article  CAS  Google Scholar 

  19. Zheng W, Yu J, Hu Z, Ruan X, Li X, Dai Y, He G (2022) 3D hollow CoNi-LDH nanocages based MMMs with low resistance and CO2-philic transport channel to boost CO2 capture. J Membr Sci 653:120542. https://doi.org/10.1016/j.memsci.2022.120542

    Article  CAS  Google Scholar 

  20. Ahmed MA, Mohamed AA (2023) A systematic review of layered double hydroxide-based materials for environmental remediation of heavy metals and dye pollutants. Inorg Chem Commun 148:110325. https://doi.org/10.1016/j.inoche.2022.110325

    Article  CAS  Google Scholar 

  21. Deng C, Liu Y, Jian H, Liang Y, Wen M, Shi J, Park H (2023) Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr Build Mater 374:130939. https://doi.org/10.1016/j.conbuildmat.2023.130939

    Article  CAS  Google Scholar 

  22. Karami Z, Jouyandeh M, Hamad SM, Ganjali MR, Aghazadeh M, Torre L, Puglia D, Saeb MR (2019) Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Prog Org Coat 136:105278. https://doi.org/10.1016/j.porgcoat.2019.105278

    Article  CAS  Google Scholar 

  23. Cai J, Heng H-M, Hu X-P, Xu Q-K, Miao F (2016) A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP. Polym Degrad Stab 126:47–57. https://doi.org/10.1016/j.polymdegradstab.2016.01.013

    Article  CAS  Google Scholar 

  24. Kalali EN, Wang X, Wang D-Y (2016) Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin. J Mater Chem A 4(6):2147–2157. https://doi.org/10.1039/C5TA09482H

    Article  CAS  Google Scholar 

  25. Ye L, Ding P, Zhang M, Qu B (2008) Synergistic effects of exfoliated LDH with some halogen-free flame retardants in LDPE/EVA/HFMH/LDH nanocomposites. J Appl Polym Sci 107(6):3694–3701. https://doi.org/10.1002/app.27526

    Article  CAS  Google Scholar 

  26. Zhang S, Yan Y, Wang W, Gu X, Li H, Li J, Sun J (2018) Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polym Degrad Stab 147:142–150. https://doi.org/10.1016/j.polymdegradstab.2017.12.004

    Article  CAS  Google Scholar 

  27. Xu S, Zhang M, Li S-Y, Zeng H-Y, Tian X-Y, Wu K, Hu J, Chen C-R, Pan Y (2020) Intercalation of a novel containing nitrogen and sulfur anion into hydrotalcite and its highly efficient flame retardant performance for polypropylene. Appl Clay Sci 191:105600. https://doi.org/10.1016/j.clay.2020.105600

    Article  CAS  Google Scholar 

  28. Du J-Z, Jin L, Zeng H-Y, Feng B, Xu S, Zhou E-G, Shi X-K, Liu L, Hu X (2019) Facile preparation of an efficient flame retardant and its application in ethylene vinyl acetate. Appl Clay Sci 168:96–105. https://doi.org/10.1016/j.clay.2018.11.004

    Article  CAS  Google Scholar 

  29. Wu K, Xu S, Tian X-Y, Zeng H-Y, Hu J, Guo Y-H, Jian J (2021) Renewable lignin-based surfactant modified layered double hydroxide and its application in polypropylene as flame retardant and smoke suppression. Int J Biol Macromol 178:580–590. https://doi.org/10.1016/j.ijbiomac.2021.02.148

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y, Gu X, Zhang S, Tang W, Zhao J (2015) The preparation and characterization of sulfamic acid-intercalated layered double hydroxide. Mater Lett 150:31–34. https://doi.org/10.1016/j.matlet.2014.12.096

    Article  CAS  Google Scholar 

  31. Shen H, Wu W, Wang Z, Wu W, Yuan Y, Feng Y (2021) Effect of modified layered double hydroxide on the flammability of intumescent flame retardant PP nanocomposites. J Appl Polym Sci 138(40):51187. https://doi.org/10.1002/app.51187

    Article  CAS  Google Scholar 

  32. Chuang YH, Tzou YM, Wang MK, Liu CH, Chiang PN (2008) Removal of 2-chlorophenol from aqueous solution by Mg/Al layered double hydroxide (LDH) and modified LDH. Ind Eng Chem Res 47(11):3813–3819. https://doi.org/10.1021/ie071508e

    Article  CAS  Google Scholar 

  33. Liu Y, Yu Z, Wang Q, Zhu X, Long R, Li X (2021) Application of sodium dodecyl sulfate intercalated CoAl LDH composite materials (RGO/PDA/SDS-LDH) in membrane separation. Appl Clay Sci 209:106138. https://doi.org/10.1016/j.clay.2021.106138

    Article  CAS  Google Scholar 

  34. Zhang P, Wang T, Qian G, Wu D, Frost RL (2015) Effective intercalation of sodium dodecylsulfate (SDS) into hydrocalumite: mechanism discussion via near-infrared and mid-infrared investigations. Spectrochim Acta A Mol Biomol Spectrosc 149:166–172. https://doi.org/10.1016/j.saa.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  35. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  36. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73(1):373–380. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  37. Huang S, Wu X, Li Z, Shi L, Zhang Y, Liu Q (2020) Rapid synthesis and characterization of monolithic ambient pressure dried MTMS aerogels in pure water. J Porous Mater 27(4):1241–1251. https://doi.org/10.1007/s10934-020-00902-3

    Article  CAS  Google Scholar 

  38. Li L, Jiang K, Qian Y, Han H, Qiao P, Zhang H (2020) Effect of organically intercalation modified layered double hydroxides-graphene oxide hybrids on flame retardancy of thermoplastic polyurethane nanocomposites. J Therm Anal Calorim 142(2):723–733. https://doi.org/10.1007/s10973-020-09263-0

    Article  CAS  Google Scholar 

  39. Ravuru SS, Jana A, De S (2019) Synthesis of NiAl-layered double hydroxide with nitrate intercalation: application in cyanide removal from steel industry effluent. J Hazard Mater 373:791–800. https://doi.org/10.1016/j.jhazmat.2019.03.122

    Article  CAS  PubMed  Google Scholar 

  40. Deng L, Zeng H, Shi Z, Zhang W, Luo J (2018) Sodium dodecyl sulfate intercalated and acrylamide anchored layered double hydroxides: a multifunctional adsorbent for highly efficient removal of congo red. J Colloid Interface Sci 521:172–182. https://doi.org/10.1016/j.jcis.2018.03.040

    Article  CAS  PubMed  Google Scholar 

  41. Zheng Y, Chen Y (2017) Preparation of polypropylene/Mg–Al layered double hydroxides nanocomposites through wet pan-milling: formation of a second-staging structure in LDHs intercalates. RSC Adv 7(3):1520–1530. https://doi.org/10.1039/C6RA26050K

    Article  CAS  Google Scholar 

  42. Zhang P, Qian G, Xu ZP, Shi H, Ruan X, Yang J, Frost RL (2012) Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism. J Colloid Interface Sci 367(1):264–271. https://doi.org/10.1016/j.jcis.2011.10.036

    Article  CAS  PubMed  Google Scholar 

  43. Zhang LH, Li F, Evans DG, Duan X (2010) Evolution of structure and performance of Cu-based layered double hydroxides. J Mater Sci 45(14):3741–3751. https://doi.org/10.1007/s10853-010-4423-6

    Article  CAS  Google Scholar 

  44. Xie J, Wang Z, Zhao Q, Yang Y, Xu J, Waterhouse G. I. N, Zhang K, Li S, Jin P, Jin G (2018) Scale-Up Fabrication of Biodegradable Poly (Butylene Adipate-Co-Terephthalate)/Organophilic-Clay Nanocomposite Films for Potential Packaging Applications. ACS Omega 3:1187–1196. https://doi.org/10.1021/acsomega.7b02062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Basu D, Das A, Stoeckelhuber KW, Wagenknecht U, Heinrich G (2014) Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci 39(3):594–626. https://doi.org/10.1016/j.progpolymsci.2013.07.011

    Article  CAS  Google Scholar 

  46. Yadollahi M, Namazi H, Barkhordari S (2014) Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohydr Polym 108:83–90. https://doi.org/10.1016/j.carbpol.2014.03.024

    Article  CAS  PubMed  Google Scholar 

  47. Nagendra B, Rosely C, Leuteritz A, Reuter U, Gowd EB (2017) Polypropylene/layered double hydroxide nanocomposites: influence of LDH intralayer metal constituents on the properties of polypropylene. ACS Omega 2(1):20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li L, Qian Y, Han H, Qiao P, Zhang H (2021) Effects of functional intercalation and surface modification on the flame retardant performance of EVA/LDHs composites. Polym Polym Compos 29(7):842–853. https://doi.org/10.1177/0967391120938174

    Article  CAS  Google Scholar 

  49. Wang Y, Yuan Z, Zhang Z, Xin Y, Fujita T, Wei Y (2022) In situ one-step fabrication of superhydrophobic layered double hydroxide on Al alloys for anti-corrosion. Appl Surf Sci 593:153400. https://doi.org/10.1016/j.apsusc.2022.153400

    Article  CAS  Google Scholar 

  50. Xu K, Chen G, Shen J (2013) Exfoliation and dispersion of micrometer-sized LDH particles in poly(ethylene terephthalate) and their nanocomposite thermal stability. Appl Clay Sci 75–76(5):114–119

    Article  Google Scholar 

  51. Zhao J, Fu X, Zhang S, Hou W (2011) Water dispersible avermectin-layered double hydroxide nanocomposites modified with sodium dodecyl sulfate. Appl Clay Sci 51(4):460–466

    Article  CAS  Google Scholar 

  52. Rojas F, Kornhauser I, Felipe C, Esparza JM, Cordero S, Domínguez A, Riccardo JL (2002) Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Phys Chem Chem Phys 4(11):2346–2355

    Article  CAS  Google Scholar 

  53. Al-Oweini R, El-Rassy H (2009) Synthesis and characterization by FTIR spectroscopy of silica aerogels prepared using several Si(OR)4 and R″Si(OR′)3 precursors. J Mol Struct 919(1–3):140–145

    Article  CAS  Google Scholar 

  54. Shi G, He S, Chen G, Ruan C, Ma Y, Chen Q, Jin X, Liu X, He C, Du C, Dai H, Yang X (2022) Crayfish shell-based micro-mesoporous activated carbon: insight into preparation and gaseous benzene adsorption mechanism. Chem Eng J 428:131148. https://doi.org/10.1016/j.cej.2021.131148

    Article  CAS  Google Scholar 

  55. Li Z, Zhang Y, Huang S, Wu X, Shi L, Liu Q (2020) Thermal stability and pyrolysis characteristics of MTMS aerogels prepared in pure water. J Nanopart Res 22(10):334. https://doi.org/10.1007/s11051-020-05062-8

    Article  CAS  Google Scholar 

  56. Bhagat S, Rao A (2006) Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process. Appl Surf Sci 252(12):4289–4297

    Article  CAS  Google Scholar 

  57. Zhang W, Li Z, Shi L, Li Z, Luo Y, Liu Q, Huang R (2019) Methyltrichlorosilane modified hydrophobic silica aerogels and their kinetic and thermodynamic behaviors. J Sol Gel Sci Technol 89(2):448–457. https://doi.org/10.1007/s10971-018-4882-9

    Article  CAS  Google Scholar 

  58. Li Zhi, Cheng X, He S, Shi X, Yang H (2015) Characteristics of ambient-pressure-dried aerogels synthesized via different surface modification methods. J Sol Gel Sci Technol 76(1):138–149. https://doi.org/10.1007/s10971-015-3760-y

    Article  CAS  Google Scholar 

  59. Babakhani S, Talib ZA, Hussein MZ, Ahmed AAA (2014) Optical and thermal properties of Zn/Al-layered double hydroxide nanocomposite intercalated with sodium dodecyl sulfate. J Spectrosc 2014:1–10. https://doi.org/10.1155/2014/467064

    Article  CAS  Google Scholar 

  60. Li X-Z, Liu S-R, Guo Y (2016) Polyaniline-intercalated layered double hydroxides: synthesis and properties for humidity sensing. RSC Adv 6(68):63099–63106. https://doi.org/10.1039/C6RA10093G

    Article  CAS  Google Scholar 

  61. Lv F, Wu Y, Zhang Y, Shang J, Chu PK (2012) Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites. J Mater Sci 47(4):2033–2039

    Article  CAS  Google Scholar 

  62. Costa FR, Leuteritz A, Wagenknecht U, Jehnichen D, Häußler L, Heinrich G (2008) Intercalation of Mg–Al layered double hydroxide by anionic surfactants: preparation and characterization. Appl Clay Sci 38(3–4):153–164. https://doi.org/10.1016/j.clay.2007.03.006

    Article  CAS  Google Scholar 

  63. Costa FR, Leuteritz A, Wagenknecht U, Landwehr M, Jehnichen D, Haeussler L, Heinrich G (2009) Alkyl sulfonate modified LDH: effect of alkyl chain length on intercalation behavior, particle morphology and thermal stability. Appl Clay Sci 44(1–2):7–14

    Article  CAS  Google Scholar 

  64. Zhang P, Shi H, Xiuxiu R, Guangren Q, Frost RL (2011) Na-dodecylsulfate modification of hydrocalumite and subsequent effect on the structure and thermal decomposition. J Therm Anal Calorim 104(2):743–747. https://doi.org/10.1007/s10973-010-1001-8

    Article  CAS  Google Scholar 

  65. Tao Q, Yuan J, Frost RL, He H, Yuan P, Zhu J (2009) Effect of surfactant concentration on the stacking modes of organo-silylated layered double hydroxides. Appl Clay Sci 45(4):262–269. https://doi.org/10.1016/j.clay.2009.06.007

    Article  CAS  Google Scholar 

  66. Kantor Z, Wu T, Zeng Z, Gaan S, Lehner S, Jovic M, Bonnin A, Pan Z, Mazrouei-Sebdani Z, Opris DM, Koebel MM, Malfait WJ, Zhao S (2022) Heterogeneous silica-polyimide aerogel-in-aerogel nanocomposites. Chem Eng J 443:136401. https://doi.org/10.1016/j.cej.2022.136401

    Article  CAS  Google Scholar 

  67. Ji S, Chen Y, Wang X, Zhang Z, Wang D, Li Y (2020) Chemical synthesis of single atomic site catalysts. Chem Rev 120(21):11900–11955. https://doi.org/10.1021/acs.chemrev.9b00818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52274248 and 51904336). This work was also supported in part by the High Performance Computing Center of Central South University.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft: Min Hu and Zhi Li; Writing—review and editing: Xiaoxu Wu, Fang Zhou, Xudong Cheng, Qiong Liu, Zhenkui Chen and Zhi Li; Visualization: Min Hu and Kai Shen; Investigation: Min Hu; Supervision and funding acquisition: Zhi Li. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaoxu Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Hu, M., Shen, K. et al. Enhancing thermal safety of hydrophobic silica aerogels by incorporating sodium dodecyl sulfate intercalated layered double hydroxides. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06379-9

Keywords

Navigation