Skip to main content
Log in

Evolution of structure and performance of Cu-based layered double hydroxides

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new series of Cu/Zn/Mn/Fe/Al hydrotalcite-like layered double hydroxides (LDHs) with the Cu/(Zn + Mn)/(Fe + Al) atomic ratios of 1/1/1 in synthesis mixture were synthesized by the coprecipitation method. The chemical composition of multicomponent precursors was identified by chemical analyses. The thermal stability, structure, and texture changes of these as-synthesized LDHs were studied by in situ high-temperature X-ray diffraction (HT-XRD), thermogravimetric-differential thermal analysis combined with mass spectrometry (TG-DTA-MS) in different atmosphere, transmission electron microscopy (TEM), and N2 adsorption–desorption experiments. The results exhibit that the incorporation of Fe3+ and Mn2+ into the lattices of Cu-containing LDHs in sequence decreases the crystallinity, water content, and thermal stability of corresponding compounds, and the thermal treatment of LDHs results in the formation of thermodynamically stable composite metal oxide associated with a small amount of simple metal oxide and also changes in texture of calcined solid. Under mild experimental conditions (atmospheric pressure and 25 °C), the catalytic liquid-phase oxidation of aqueous phenol solutions is related to the composition, oxidation states, composite forms and synergy of transition metal cations in calcined LDHs, and calcined LDH with Cu/Zn/Mn/Fe/Al atomic ratio of 1/1/0/0.3/0.7 at 500 °C achieves the highest conversion of phenol mainly owing to the formation of a larger amount of composite metal oxide with some residual carbonate in the solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Roy A, Fornao C, Besse JP (2001) In: Rives V (ed) Layered double hydroxides: present and future. Nova Science, New York, p 1

    Google Scholar 

  2. Evans DG, Slade RCT (2006) In: Duan X, Evans DG (eds) Structure and bonding, vol 119. Springer Verlag, Berlin, p 1

    Google Scholar 

  3. Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173

    Article  CAS  Google Scholar 

  4. Basile F, Vaccari A (2001) In: Rives V (ed) Layered double hydroxides: present and future. Nova Science, New York, p 285

    Google Scholar 

  5. Feng L, Duan X (2006) In: Duan X, Evans DG (eds) Structure and bonding, vol 119. Springer Verlag, Berlin, p 193

    Google Scholar 

  6. Kannan S (2006) Catal Surv Asia 10:117

    Article  CAS  Google Scholar 

  7. Serwicka EM, Bahranowski K (2004) Catal Today 90:85

    Article  CAS  Google Scholar 

  8. Tichit D, Coq B (2003) CATTECH 7:206

    Article  CAS  Google Scholar 

  9. Sels BF, De Vos DE, Jacobs PA (2001) Catal Rev Sci Eng 43:443

    Article  CAS  Google Scholar 

  10. Bellotto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaïm E (1996) J Phys Chem 100:8535

    Article  CAS  Google Scholar 

  11. Hibino T, Yamashita Y, Kosuge K, Tsunashima A (1995) Clays Clay Miner 43:427

    Article  CAS  Google Scholar 

  12. Hudson MJ, Carlino S, Apperley DC (1995) J Mater Chem 5:323

    Article  CAS  Google Scholar 

  13. Belloto M, Rebours B, Clause O, Lynch J, Bazin D, Elkaïm E (1996) J Phys Chem 100:8527

    Article  Google Scholar 

  14. Kooli F, Crespo I, Barriga C, Ulibarri MA, Rives V (1996) J Mater Chem 6:1199

    Article  CAS  Google Scholar 

  15. Kovanda F, Jirátová K, Rymeš J, Koloušek D (2001) Appl Clay Sci 18:71

    Article  Google Scholar 

  16. Reichle WT, kang SY, Everhardt DS (1986) J Catal 101:352

    Article  CAS  Google Scholar 

  17. Ulibarri MA, Fernández JM, Labajos FM, Rives V (1991) Chem Mater 3:626

    Article  CAS  Google Scholar 

  18. Pesic L, Salipurovic S, Markovic V, Vucelic D, Kagunya W, Jones W (1992) J Mater Chem 2:1069

    Article  CAS  Google Scholar 

  19. Zhang LH, Li F, Evans DG, Duan X (2004) Mater Chem Phys 87:402

    Article  CAS  Google Scholar 

  20. StG Christoskova, Stoyanova M, Georgieva M (2001) Appl Catal A 208:243

    Article  Google Scholar 

  21. Pintar A, Levec J (1992) Chem Eng Sci 47:2395

    Article  CAS  Google Scholar 

  22. Luck F (1996) Catal Today 27:195

    Article  CAS  Google Scholar 

  23. Levec J, Pintar A (1995) Catal Today 24:51

    Article  CAS  Google Scholar 

  24. Dubey A, Kannan S, Velu S, Suzuki K (2003) Appl Catal A 238:319

    Article  CAS  Google Scholar 

  25. Dubey A, Rivesb V, Kannan S (2002) J Mol Catal A 181:151

    Article  CAS  Google Scholar 

  26. Resini C, Catania F, Berardinelli S, Paladino O, Busca G (2008) Appl Catal B 84:678

    Article  CAS  Google Scholar 

  27. Yoon CH, Cho SH, Kim SH, Ha SR (2001) Water Sci Technol 43:229

    CAS  PubMed  Google Scholar 

  28. Belkacemi K, Larachi F, Hamoudi S, Sayari A (2000) Appl Catal A 199:199

    Article  CAS  Google Scholar 

  29. Kim KH, Kim JR, Ihm SK (2009) J Hazard Mater 167:1158

    Article  CAS  PubMed  Google Scholar 

  30. Bhargava S, Jani H, Tardio J, Akolekar D, Hoang M (2007) Ind Eng Chem Res 46:8652

    Article  CAS  Google Scholar 

  31. Tichit D, Lhouty MH, Guida A, Chiche BH, Figueras F, Auroux A, Bartalini D, Garrone E (1995) J Catal 151:50

    Article  CAS  Google Scholar 

  32. Corma A, Fornés V, Rey F (1994) J Catal 148:205

    Article  CAS  Google Scholar 

  33. Li F, Zhang LH, Evans DG, Duan X (2004) Colloids Surf A 244:169

    Article  CAS  Google Scholar 

  34. Zhang LH, Zheng C, Li F, Evans DG, Duan X (2008) J Mater Sci 43:237. doi:10.1007/s10853-007-2167-8

    Article  ADS  Google Scholar 

  35. Zhang LH, Xiang X, Zhang L, Li F, Zhu J, Evans DG, Duan X (2008) J Phys Chem Solids 69:1098

    Article  CAS  ADS  Google Scholar 

  36. Vaccari A (1998) Catal Today 41:53

    Article  CAS  Google Scholar 

  37. Kanezaki E (1998) Inorg Chem 37:2588

    Article  CAS  Google Scholar 

  38. Del Arco M, Malet P, Trujillano R, Rives V (1999) Chem Mater 11:624

    Article  CAS  Google Scholar 

  39. Rocha J, Del Arco M, Rives V, Ulibarri MA (1999) J Mater Chem 9:2499

    Article  CAS  Google Scholar 

  40. Tichit D, Bennani MN, Figueras F, Ruiz JR (1998) Langmuir 14:2086

    Article  CAS  Google Scholar 

  41. Dean JA (1991) Lange’s handbook of chemistry, 13th edn. Science, Beijing

    Google Scholar 

  42. Barin I, Knacke O (1973) Thermochemical properties of inorganic substances. Springer Verlag, Berlin

    Google Scholar 

  43. Barin I, Knacke O, Kubashewski O (1977) Thermochemical properties of inorganic substances, supplement. Springer Verlag, Berlin

    Google Scholar 

  44. Kannan S, Rives V, Knözinger H (2004) J Solid State Chem 177:319

    Article  CAS  ADS  Google Scholar 

  45. Kannan S, Dubey A, Knözinger H (2005) J Catal 231:381

    Article  CAS  Google Scholar 

  46. Barriga C, Jones W, Malet P, Rives V, Ulibarri MA (1998) Inorg Chem 37:1812

    Article  CAS  Google Scholar 

  47. Li F, Liu JJ, Evans DG, Duan X (2004) Chem Mater 16:1597

    Article  CAS  Google Scholar 

  48. Radha AV, Thomas GS, Kamath PV, Shivakumara C (2007) J Phys Chem B 111:3384

    Article  CAS  PubMed  Google Scholar 

  49. Britto S, Radha AV, Ravishankar N, Kamath PV (2007) Solid State Sci 9:279

    Article  CAS  ADS  Google Scholar 

  50. Barriga C, Fernández JM, Ulibarri MA, Labajos FM, Rives V (1996) J Solid State Chem 124:205

    Article  CAS  ADS  Google Scholar 

  51. Rojas R, Ulibarri MA, Barriga C, Rives V (2008) Microporous Mesoporous Mater 112(1–3):262

    Article  CAS  Google Scholar 

  52. Holgado MJ, San Román S, Malet P, Rives V (2005) Mater Chem Phys 89:49

    Article  CAS  Google Scholar 

  53. Rives V (2001) In: Rives V (ed) Layered double hydroxides: present and future. Nova Science, New York, p 115

    Google Scholar 

  54. Labajos FM, Sastre MD, Trujillano R, Rives V (1999) J Mater Chem 9:1033

    Article  CAS  Google Scholar 

  55. Béres A, Pálinkó I, Fudala Á, Kiricsi I, Kiyozumi Y, Mizukami F, Nagy JB (1999) J Therm Anal Calorim 56:311

    Article  Google Scholar 

  56. Kagunya W, Dutta PK, Lei Z (1997) Physica B 234:910

    Article  ADS  Google Scholar 

  57. Yan H, Lu J, Wei M, Ma J, Li H, He J, Evans DG, Duan X (2008) J Mol Struct THEOCHEM 866:34

    Article  CAS  Google Scholar 

  58. Labajos FM, Rives V, Ulibarri MA (1992) J Mater Sci 27:1546. doi:10.1007/BF00542916

    Article  CAS  ADS  Google Scholar 

  59. Kannan S, Narayanan A, Swamy CS (1996) J Mater Sci 31:2353. doi:10.1007/BF01152946

    Article  CAS  ADS  Google Scholar 

  60. Hočevar S, Batista J, Levec J (1999) J Catal 184:39

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank the financial support from the National Natural Science Foundation of China (Grant No. 20901056) and 973 Program (2009CB939802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. H. Zhang or F. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L.H., Li, F., Evans, D.G. et al. Evolution of structure and performance of Cu-based layered double hydroxides. J Mater Sci 45, 3741–3751 (2010). https://doi.org/10.1007/s10853-010-4423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4423-6

Keywords

Navigation