Skip to main content
Log in

Investigation of structural, morphological, and optical properties of (Ni/Co, Fe/Co, and Fe/Ni) co-doped ZnO thin films prepared by sol-gel spin coating technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, undoped and (Ni/Co, Fe/Co, Fe/Ni) co-doped ZnO thin films were deposited on glass substrates by a low-cost sol-gel spin coating technique. The effect of Ni/Co, Fe/Co, Fe/Ni co-doping on the structural, morphological, and optical properties of ZnO thin films was investigated. All films exhibited hexagonal wurtzite nanocrystalline structures with a preferred orientation in the (0 0 2) plane. The crystallite size was found to decrease upon co-doping ranging from 34.4 to 30.2 nm. Raman spectra confirmed the incorporation of all doped ions into ZnO lattice. The morphological analysis of all samples revealed a smooth and crack-free surface, with an average particle size distribution ranging from 50 to 70 nm. All prepared samples showed high transparency in the visible region (~90%) and optical band gap values ranging from 3.263 eV to 3.275 eV, with a high band gap energy of 3.275 eV for the Fe/Co co-doped ZnO thin films. The PL spectra of co-doped samples exhibited a relatively similar features of emission spectra, in both ultraviolet (UV) and visible regions except for Fe/Co-ZnO presented a quenching of visible emission. The systematic investigation into the possible mechanisms underlying defect luminescence in each sample revealed that co-doping with Fe/Ni and Ni/Co lead to a slight increase in the abundance of Oi in the ZnO film. The examination of the chromaticity color coordinates showed that only co-doping with Fe/Co induces a shift to a different color region on the CIE chromaticity diagram. The properties of prepared ZnO thin films demonstrated their suitability for light-emitting and optoelectronic applications.

Graphical Abstract

Highlights

  • Undoped and (Ni/Co, Fe/Co, Fe/Ni) co-doped ZnO thin films were deposited on glass substrates by a low-cost sol-gel spin coating technique.

  • The structure, surface morphology, transmittance, and photoluminescence were studied in detail.

  • X-ray diffraction study revealed the formation of nanocrystalline thin films highly oriented along the c-axis in the (002) plane with a pure hexagonal wurtzite structure.

  • SEM micrographs revealed a granular surface that was free of cracks and had a homogeneous distribution of particles with an average particle size between 50 and 70 nm.

  • All prepared samples showed high transparency in the visible region (~90%) and optical band gap values ranging from 3.263 eV to 3.275 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hwang HA, Park HJ, Moon DG (2022) Highly efficient inverted phosphorescent organic light-emitting devices with ZnO nanoparticles electron injection layer. Synth Met 287:117078. https://doi.org/10.1016/j.synthmet.2022.117078

    Article  CAS  Google Scholar 

  2. Wang Z, Chen C, Wu K, Chong H, Ye H (2019) Transparent conductive oxides and their applications in near infrared plasmonics. Phys Status Solidi A 216:1700794. https://doi.org/10.1002/pssa.201700794

    Article  CAS  Google Scholar 

  3. Hjiri M, Neri G (2023) Photo-activated Ga-ZnO gas sensor for NO2 detection at near ambient temperature. J Inorg Organomet Polym Mater 33:11. https://doi.org/10.1007/s10904-023-02934-z

    Article  CAS  Google Scholar 

  4. Jaballah S, Dahman H, Neri G, El Mir L (2021) Effect of Al and Mg co-doping on the microstructural and gas-sensing characteristics of ZnO nanoparticles. J Inorg Organomet Polym Mater 31:1653–1667. https://doi.org/10.1007/s10904-020-01796-z

    Article  CAS  Google Scholar 

  5. Bright CI (2018) Transparent conductive thin films. In: Piegari A, Flory F (Eds.) Optical thin films and coatings, second ed. Woodhead Publishing, Sawston, Cambridge, pp 741–788. https://doi.org/10.1016/B978-0-08-102073-9.00021-7

  6. Tuyen LTC, Jian SR, Tien NT, Le PH (2019) Nanomechanical and material properties of fluorine-doped tin oxide thin films prepared by ultrasonic spray pyrolysis: effects of F-doping. Materials 12:1665. https://doi.org/10.3390/ma12101665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ho SM (2016) A review on thin films on indium tin oxide coated glass substrate. Asian J Chem 28:469–472. https://doi.org/10.14233/ajchem.2016.19579

    Article  CAS  Google Scholar 

  8. Mallick A, Basak D (2018) Revisiting the electrical and optical transmission properties of co-doped ZnO thin films as n-type TCOs. Prog Mater Sci 96:86–110. https://doi.org/10.1016/j.pmatsci.2018.03.004

    Article  CAS  Google Scholar 

  9. Minami T (2008) Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films 516:5822–5828. https://doi.org/10.1016/j.tsf.2007.10.063

    Article  CAS  Google Scholar 

  10. Chen Y (2018) Review of ZnO transparent conducting oxides for solar applications. IOP Conf Ser Mater Sci Eng 423:012170. https://doi.org/10.1088/1757-899X/423/1/012170

    Article  Google Scholar 

  11. Murkute P, Ghadi H, Sreedhara S, Chakrabarti S (2019) Detailed investigation of photoluminescence, structural, and elemental properties of ZnO thin films under various annealing ambient. Superlattices Microstruct 136:106310. https://doi.org/10.1016/j.spmi.2019.106310

    Article  CAS  Google Scholar 

  12. Johan BA, Ali MM, Haque MJ, Kabir MH, Roy S, Ali MS (2023) An approach to investigate the structural, morphological, and optical properties of spray pyrolyzed B and Mg co-doped ZnO thin films. Results Mater 19:100409. https://doi.org/10.1016/j.rinma.2023.100409

    Article  CAS  Google Scholar 

  13. Tiwari A, Sahay PP (2022) Highly c-axis oriented (Mg, Sn) co-doped ZnO thin films for optoelectronic applications. Opt Mater 134:113098. https://doi.org/10.1016/j.optmat.2022.113098

    Article  CAS  Google Scholar 

  14. Sagheer R, Khalil M, Abbas V, Kayani ZN, Tariq U, Ashraf F (2020) Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 200:163428. https://doi.org/10.1016/j.ijleo.2019.163428

    Article  CAS  Google Scholar 

  15. Houri N, Djelloul A, Adnane M (2020) Performance comparison of low cost TiO2 and ZnO solar cells sensitized with coumarin C343. J Nano- Electron Phys 12(6):06004(6pp). https://doi.org/10.21272/jnep.12(6).06004

    Article  CAS  Google Scholar 

  16. Darenfad W, Guermat N, Mirouh K (2023) Thoughtful investigation of ZnO doped Mg and co-doped Mg/Mn, Mg/Mn/ F thin films: a first study. J Mol Struct 1286:135574. https://doi.org/10.1016/j.molstruc.2023.135574

    Article  CAS  Google Scholar 

  17. Siddheswaran R, Mangalaraja RV, Tijerina EP, Menchaca JL, Meléndrez MF, Avila RE, Jeyanthi CE, Gomez ME (2013) Fabrication and characterization of a diluted magnetic semiconducting TM co-doped Al:ZnO (TM = Co, Ni) thin films by sol–gel spin coating method. Spectrochim Acta Part A: Mol Biomol Spectrosc 106:118–123. https://doi.org/10.1016/j.saa.2013.01.017

    Article  CAS  Google Scholar 

  18. Dhyani AM, Nautiyal A, Kumar N, Rathi S, Kumar D (2023) Study of Co-doped ZnO thin films deposited by low-cost spin coating. Mater Today Proc 73:195–199. https://doi.org/10.1016/j.matpr.2022.10.041

    Article  CAS  Google Scholar 

  19. Shkir M (2023) Development of highly sensitive Al, Ga, and In-doped ZnO films by the drop casting method for NH3 gas sensing. New J Chem 47:4880–4887. https://doi.org/10.1039/D2NJ05323C

    Article  CAS  Google Scholar 

  20. Ahmed AD, Ezike SC, Ike E, Idu KH, Obodo RM, Salawu MA (2024) Spray pyrolyzed surface-modified ZnO thin films via cobalt doping: Optical, structural and morphological properties. Opt Mater 149:115053. https://doi.org/10.1016/j.optmat.2024.115053

    Article  CAS  Google Scholar 

  21. Shkir M (2022) Enhancement in optical and electrical properties of ZnO thin films via Co doping for photodetector applications. Mater Sci Eng B 284:115861. https://doi.org/10.1016/j.mseb.2022.115861

    Article  CAS  Google Scholar 

  22. Chai C, Liu H, Yu W (2021) The electronic and optical properties of the Fe,Co,Ni and Cu doped ZnO monolayer photocatalyst. Chem Phys Lett 778:138765. https://doi.org/10.1016/j.cplett.2021.138765

    Article  CAS  Google Scholar 

  23. So˘guksu AK, Kerli S, Kavun Y, Alver U (2024) Synthesis and characterizations of Ce-doped ZnO thin films for radiation shielding. Opt Mater 148:114941. https://doi.org/10.1016/j.optmat.2024.114941

    Article  CAS  Google Scholar 

  24. Shkir M, Palanivel B, Khan A, Kumar M, Chang JH, Mani A, AlFaify S (2022) Enhanced photocatalytic activities of facile auto-combustion synthesized ZnO nanoparticles for wastewater treatment: An impact of Ni doping. Chemosphere 291:132687. https://doi.org/10.1016/j.chemosphere.2021.132687

    Article  CAS  PubMed  Google Scholar 

  25. Prasad S, Bansal S, Pandey SP (2022) Effect of substrate rotation speed on structural, morphological, vibrational and optical properties of sol-gel derived Mn-Ni co-doped ZnO thin films. Mater Today Proc 49:3008–3014. https://doi.org/10.1016/j.matpr.2020.10.172

    Article  CAS  Google Scholar 

  26. Seniye Karakaya S, Kaba L (2024) Wrinkle type nanostructured of Al-Ce co-doped ZnO thin films for photocatalytic applications. Surf Interfaces 44:103655. https://doi.org/10.1016/j.surfin.2023.103655

    Article  CAS  Google Scholar 

  27. Alagarasan D, Hegde SS, Naik R, Murahari P, Shetty HD, Shiva Prasad H, Maiz F, Shkir M(2024) Fabrication of high-performance RT-NH3 gas sensor based on Cu and La co-doped ZnO films through a facile drop-casting method. Opt Mater 147:114705. https://doi.org/10.1016/j.optmat.2023.114705

    Article  CAS  Google Scholar 

  28. Xu T, Gao X, Zhang J, Shi L, Ju L, Sun T, Zhang X, Jia S, Yan S (2024) Emergent carrier spin polarization in (Fe, Al)-codoped ZnO thin films explored by Andreev Reflection spectroscopy. J Alloy Compd 980:173602. https://doi.org/10.1016/j.jallcom.2024.173602

    Article  CAS  Google Scholar 

  29. Ghribi F, Khalifi N, Mrabet S, Ghiloufi I, T˘alu S, ElMir LM, Filho HDF, Oliveira RMPB, Matos RS (2022) Evaluation of the structure–micromorphology relationship of Co10%–Alx Co-doped Zinc oxide nanostructured thin films deposited by pulsed laser using XRD and AFM. Arab J Sci Eng 47:7717–7728. https://doi.org/10.1007/s13369-022-06568-0

    Article  CAS  Google Scholar 

  30. Gu JH, Tian Y, Chen SB, Zhong ZY (2023) Structural, electro-optical and nonlinear optical properties of sputtered titanium–gallium co-doped zinc oxide transparent semiconductor films. J Mater Sci: Mater Electron 34:1277. https://doi.org/10.1007/s10854-023-10632-2

    Article  CAS  Google Scholar 

  31. Cora I, Baji Z, Fogarassy Z, Szabo Z, Pe´cz B (2019) Structural study of MgO and Mg-doped ZnO thin films grown by atomic layer deposition. Mater Sci Semicond Process 93:6–11. https://doi.org/10.1016/j.mssp.2018.12.021

    Article  CAS  Google Scholar 

  32. Melouki M, Mehnane HF, Djelloul A, Larbah Y, Adnane M (2021) Improvement of Electrical Properties of Grätzel Cells by Tuning the Dye Layer with CdS/ZnO Junction. J Nano- Electron Phys 13(4):04004(5pp). https://doi.org/10.21272/jnep.13(4).04004

    Article  CAS  Google Scholar 

  33. Olofinjana B, Mbamara US, Ajayi O, Lorenzo-Martin C, Obiajuuwa EI, Ajayi EOB (2017) Tribological behavior of N-doped ZnO thin films by metal organic chemical vapor deposition under lubricated contacts. Friction 5:402–413. https://doi.org/10.1007/s40544-017-0154-x

    Article  CAS  Google Scholar 

  34. Tsin F, Venerosy A, Vidal J, Collin S, Clatot J, Lombez L, Paire M, Borensztajn S, Broussillou C, Grand PP, Jaime S, Lincot D, Rousset J (2015) Electrodeposition of ZnO window layer for an all-atmospheric fabrication process of chalcogenide solar cell. Sci Rep. 5:1–8. https://doi.org/10.1038/srep08961

    Article  CAS  Google Scholar 

  35. Djelloul A, Larbah Y, Adnane M, Labdelli B, Ziane MI, Manseri A, Messaoud A (2018) Properties of undoped and (Al, In) doped ZnO thin films prepared by ultrasonic spray pyrolysis for solar cell applications. J Nano- Electron Phys 10(2):02036(5pp). https://doi.org/10.21272/jnep.10(2).02036

    Article  CAS  Google Scholar 

  36. Worasawat S, Taku M, Potlog T, Mimura H (2020) The photophysical properties of Ga-doped ZnO thin films grown by spray Pyrolysis method. J Inorg Organomet Polym Mater 30:4895–4904. https://doi.org/10.1007/s10904-020-01605-7

    Article  CAS  Google Scholar 

  37. Mirza GM, Tusher MMH, Sakib N, Islam MDN (2023) Effect of Al-doping on morphology, structure, and optical band gap of ZnO thin films synthesized by sol–gel spin-coating technique. J Mater Sci: Mater Electron 34:1542. https://doi.org/10.1007/s10854-023-10958-x

    Article  CAS  Google Scholar 

  38. Ayachi M, Ayad F, Djelloul A, Benharrat L, Anas S (2021) Synthesis and characterization of Ni-doped ZnO thin films prepared by sol–gel spin coating method. Semiconductors 55(5):566–574. https://doi.org/10.1134/S1063782621050043

    Article  Google Scholar 

  39. Boumaiza A, Boudine B, Sebais M (2021) Fabrication and characterization of pure and Pb-doped ZnO thin films prepared by sol–gel and dip-coeting method. J Inorg Organomet Polym Mater 31:3350–3355. https://doi.org/10.1007/s10904-021-01990-7

    Article  CAS  Google Scholar 

  40. Meziane K, Hichou AE, Hamidi AE, Chhiba M, Bourial A, Almaggoussi A (2017) Li concentration dependence of structural properties and optical band gap of Li-doped ZnO films. Appl Phys A 123:430. https://doi.org/10.1007/s00339-017-1039-6

    Article  CAS  Google Scholar 

  41. Gultepe O, Atay F (2022) The effect of Al element on structural, optical, electrical, surface and photocatalytic properties of Sol-gel derived ZnO films. Appl Phys A 128:25. https://doi.org/10.1007/s00339-021-05173-6

    Article  CAS  Google Scholar 

  42. Feng ZC (2013) Handbook of Zinc Oxide and Related Materials: Volume One, Materials (Electronic Materials and Devices), Taylor & Francis Group, CRC Press. https://doi.org/10.1201/b13071

  43. Guermat N, Daranfed W, Bouchama I, Bouarissa N (2021) Investigation of structural, morphological, optical and electrical properties of Co/Ni co-doped ZnO thin films. J Mol Struct 51:129134. https://doi.org/10.1016/j.molstruc.2020.129134

    Article  CAS  Google Scholar 

  44. Mahdhi H, BenAyadi Z, Alaya S, Gauffier JL, Djessas K (2014) The effects of dopant concentration and deposition temperature on the structural, optical and electrical properties of Ga-doped ZnO thin films. Superlattices Microstruct 72:60e71. https://doi.org/10.1016/j.spmi.2014.04.013

    Article  CAS  Google Scholar 

  45. Zegadi C, Abderrahmane A, Djelloul A, Hamzaoui S, Adnane M, Chaumont D, Abdelkebir K (2015) Effects on structural and electro-optical properties of iron incorporation to p-zinc oxide (ZnO) thin films deposited by dip-coating process. Int Rev Phys 9:1–10

    Google Scholar 

  46. Yasmeen S, Munawar T, Asghar M, Azhar M (2020) Synthesis and photocatalytic study of Zn0.90Co0.10O and Zn0.90Co0.05M0.05O (M = Ca, Ba, Cr, Pb) nanocrystals: structural, optical and electrical investigations. Integr Med Res 9(3):4076–4096. https://doi.org/10.1016/j.jmrt.2020.02.034

    Article  CAS  Google Scholar 

  47. Hui A, Ma J, Liu J, Bao Y, Zhang J (2017) Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity. J Alloy Compd 696:639–647. https://doi.org/10.1016/j.jallcom.2016.10.319

    Article  CAS  Google Scholar 

  48. Sharmin A, Tabassum S, Bashar MS, Mahmood ZH (2019) Depositions and characterization of sol–gel processed Al-doped ZnO (AZO) as transparent conducting oxide (TCO) for solar cell application. J Theor Appl Phys 13:123–132. https://doi.org/10.1007/s40094-019-0329-0

    Article  Google Scholar 

  49. Djelloul A, Adnane M, Larbah Y, Sahraoui T, Zegadi C, Maha A, Rahal B (2015) Properties study of ZnS thin films prepared by spray pyrolysis method. J Nano- Electron Phys 7(4):04045

    Google Scholar 

  50. Özdal T, Chtouki T, Kavak H, Figa V, Guichaoua D, Erguig H, Mysliwiec J, Sahraoui B (2021) Effect of annealing temperature on morphology and optoelectronics properties of spin-coated CZTS thin films. J Inorg Organomet Polym Mater 31:89–99. https://doi.org/10.1007/s10904-020-01646-y

    Article  CAS  Google Scholar 

  51. Azizaha N, Muhammadya S, Purbayantoa MAK, Nurfanib E, Winataa T, Sustinia E, Widitaa R, Darma Y (2020) Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Prog Nat Sci: Mater Int 30:28–34. https://doi.org/10.1016/j.pnsc.2020.01.006

    Article  CAS  Google Scholar 

  52. Abdullahi SS, Koseog˘lu Y, Guner S, Kazan S (2015) Synthesis and characterization of Mn and Co codoped ZnO nanoparticles. Superlattices Microstructures 83:342–352. https://doi.org/10.1016/j.spmi.2015.03.021

    Article  CAS  Google Scholar 

  53. Vijayaprasath G, Murugan R, Asaithambi S, Anandha Babu G, Sakthivel P, Mahalingam T, Hayakawa Y, Ravi G (2016) Structural characterization and magnetic properties of Co co-doped Ni/ZnO nanoparticles. Appl Phys A 122:122. https://doi.org/10.1007/s00339-016-9655-0

    Article  CAS  Google Scholar 

  54. Ashokkumar M, Muthukumaran S (2014) Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method. Opt Mater 37:671–678. https://doi.org/10.1016/j.optmat.2014.08.012

    Article  CAS  Google Scholar 

  55. A-Naim AF, Afify N, Sedky A, Ibrahim SS (2021) Structural morphology and nonlinear behavior of pure and co-doped Zn1-x-yFexMyO varistors with (M = Cu, Ni). Appl Phys A 127:486. https://doi.org/10.1007/s00339-021-04560-3

    Article  CAS  Google Scholar 

  56. Stolyarchuk ID, Kleto GI, Dziedzic A (2017) Structural and optical properties of Co and Ni doped ZnO thin films prepared by RF magnetron sputtering. Phys Chem Solid State 18:302–308. https://doi.org/10.15330/pcss.18.3.302-308

    Article  Google Scholar 

  57. Cusco R, Alarcon-Llado E, Ibanez J, Artus L, Jimenez J, Wang B, Callahan MJ (2007) Temperature dependence of Raman scattering in ZnO. Phys Rev B 75:165202. https://doi.org/10.1103/PhysRevB.75.165202

    Article  CAS  Google Scholar 

  58. Serrano J, Widulle F, Romero AH, Cardona M, Lauck R, Rubio A (2003) Dependence of phonon widths on pressure and isotopic mass: ZnO. phys stat sol (b) 235(2):260–266. https://doi.org/10.1002/pssb.200321566

    Article  CAS  Google Scholar 

  59. Schumm M, Koerdel M, M¨uller S, Zutz H, Ronning C, Stehr J, Hofmann DM, Geurts J (2008) Structural impact of Mn implantation on ZnO. N. J Phys 10:043004. https://doi.org/10.1088/1367-2630/10/4/043004

    Article  CAS  Google Scholar 

  60. Serrano J, Romero AH, Manjo´n FJ, Lauck R, Cardona M, Rubio A (2004) Pressure dependence of the lattice dynamics of ZnO: An ab initio approach. Phys Rev B 69:094306. https://doi.org/10.1103/PhysRevB.69.094306

    Article  CAS  Google Scholar 

  61. Sudakar C, Kharel P, Lawes G, Suryanarayanan R, Naik R, Naik VM (2007) Raman spectroscopic studies of oxygen defects in Co-doped ZnO films exhibiting room-temperature ferromagnetism. J Phys: Condens Matter 19:026212(9pp). https://doi.org/10.1088/0953-8984/19/2/026212

    Article  CAS  Google Scholar 

  62. Thakur JS, Auner GW, Naik VM, Sudakar C, Kharel P, Lawes G, Suryanarayanan R, Naik R (2007) Raman scattering studies of magnetic Co-doped ZnO thin films. J Appl Phys 102:093904. https://doi.org/10.1063/1.2804286

    Article  CAS  Google Scholar 

  63. Pandey RK, Mishra S, Tiwari R, Sharma MP, Bajpai PK (2015) Raman analysis of Ni-doped ZnO (Ni:ZnO) thin films by sol-gel spin coating system for device applications. Int J Electr Electron Res 3(4):27–31

    Google Scholar 

  64. Vijayakumara Y, Nagaraju P, Yaragani V, Parne SR, Awwad NasserS, Ramana Reddy MV (2020) Nanostructured Al and Fe co-doped ZnO thin films for enhanced ammonia detection. Phys Condens Matter 581:411976. https://doi.org/10.1016/j.physb.2019.411976

    Article  CAS  Google Scholar 

  65. Zhang R, Yin PG, Wang N, Guo L (2009) Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci 11:865–869. https://doi.org/10.1016/j.solidstatesciences.2008.10.016

    Article  CAS  Google Scholar 

  66. Alim KA, Fonoberov VA, Shamsa M, Balandin AA (2005) Micro-Raman investigation of optical phonons in ZnO nanocrystals. J Appl Phys 97:124313. https://doi.org/10.1063/1.1944222

    Article  CAS  Google Scholar 

  67. Ahmad AA, Migdadi AB, Alsaad AM, Al‑Bataineh QM, Telfah A (2021) Optical, structural, and morphological characterizations of synthesized (Cd–Ni) co‑doped ZnO thin films. Appl Phys A 127:922. https://doi.org/10.1007/s00339-021-05090-8

    Article  CAS  Google Scholar 

  68. Djelloul A, Adnane M, Larbah Y, Zerdali M, Zegadi C, Messaoud A (2016) Effect of annealing on the properties of nanocrystalline CdS thin films prepared by CBD method. J Nano- Electron Phys 8(2):02005. https://doi.org/10.21272/jnep.8(2).02005

    Article  CAS  Google Scholar 

  69. Djelloul A, Adnane M, Larbah Y, Hamzaoui S (2016) Morphology, structural and optical study of ZnS thin films prepared by Successive Ionic Layer Adsorption and Reaction (SILAR) Method. J Opt Adv Mater 18(1-2):136

    CAS  Google Scholar 

  70. Jagtap S, Priolkar KR (2013) Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors. Sens Actuators B 183:411–418. https://doi.org/10.1016/j.snb.2013.04.010

    Article  CAS  Google Scholar 

  71. Aoun Y, Benhaoua B, Benramache S, Gasmi B (2015) Effect of annealing temperature on structural, optical and electrical properties of zinc oxide (ZnO) thin films deposited by spray pyrolysis technique. Optik 126:5407–5411. https://doi.org/10.1016/J.IJLEO.2015.08.267

    Article  CAS  Google Scholar 

  72. Arshad M, Azam A, Ahmed AS, Mollah S, Naqvi AH (2011) Effect of Co substitution on the structural and optical properties of ZnO nanoparticles synthesized by Sol Gel Route. J Alloy Comp 509:8378–8381. https://doi.org/10.1016/j.jallcom.2011.05.047

    Article  CAS  Google Scholar 

  73. Chebbah K, Baghdad R, Lemée N, Lamura G, Zeinert A, Hadj-Zoubir N, Bousmaha M, Bezzerrouk MA, Bouyanfif H, Allouche B, Zellama K (2017) Structural and magnetic properties of Co-doped ZnO thin films grown by ultrasonic spray pyrolysis method. Superlattices Microstruct 104:553–569. https://doi.org/10.1016/j.spmi.2016.11.069

    Article  CAS  Google Scholar 

  74. Ali RN, Naz H, Li J, Zhu X, Liu P, Xiang B (2018) Band gap engineering of transition metal (Ni/Co) codoped in zinc oxide (ZnO) nanoparticles. Alloy Compd 744:90–95. https://doi.org/10.1016/j.jallcom.2018.02.072

    Article  CAS  Google Scholar 

  75. Goktas A, Mutlu IH, Yamada Y (2013) Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol–gel method. Superlattice Microst 57:139–149. https://doi.org/10.1016/j.spmi.2013.02.010

    Article  CAS  Google Scholar 

  76. M’hamed G, M’hammed B, Abdellah O, Azzeddine M, Bachir K, Mahmoud B, Mahfoud A, Abdelkader A, Kadda Benmokhtar B, Abdelhak B, Mohamed Salah H (2020) Chemical, morphological and optical properties of undoped and Cu-doped ZnO thin films submitted to UHV treatment. Appl Surf Sci 520:146302. https://doi.org/10.1016/j.apsusc.2020.146302

    Article  CAS  Google Scholar 

  77. Mahmoud B, Bachir K, Abdellah O, M’hammed B, M’hamed G, Yves C, Kada Belmokhtar B, Mohamed B, Mohamed Amine B, Azzeddine M, Mahfoud A (2020) Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Optical Mater 111:110560. https://doi.org/10.1016/j.optmat.2020.110560

    Article  CAS  Google Scholar 

  78. Galdámez-Martinez A, Santana G, Güell F, Martínez-Alanis PR, Dutt A (2020) Photoluminescence of ZnO Nanowires: a review. Nanomaterials 10(5):857. https://doi.org/10.3390/nano10050857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abdelkrim M, Guezzoul M, Bedrouni M, Bouslama M, Ouerdane A, Kharroubi B (2022) Effect of slight cobalt incorporation on the chemical, structural, morphological, optoelectronic, and photocatalytic properties of ZnO thin film. J Alloy Compd 920:165703. https://doi.org/10.1016/j.jallcom.2022.165703

    Article  CAS  Google Scholar 

  80. Derri A, Guezzoul M, Mokadem A, Ouerdane A, Benmohktar Bensassi K, Bouslama M, Kharoubi B, Hameurlaine E (2023) Insight into the photoluminescence and morphological characteristics of transition metals (TM = Mn, Ni, Co, Cu)-doped ZnO semiconductor: a comparative study. Optical Mater 145:114467. https://doi.org/10.1016/j.optmat.2023.114467

    Article  CAS  Google Scholar 

  81. Vempati S, Mitra J, Dawson P (2012) One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res Lett 7:470. https://doi.org/10.1186/1556-276X-7-470

    Article  PubMed  PubMed Central  Google Scholar 

  82. Agarwal DC, Singh UB, Gupta S, Singhal R, Kulriya PK, Singh F, Tripathi A, Singh J, Joshi US, Avasthi DK (2019) Enhanced room temperature ferromagnetism and green photoluminescence in Cu doped ZnO thin film synthesised by neutral beam sputtering. Sci Rep. 9:6675. https://doi.org/10.1038/s41598-019-43184-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kaur P, Kriti, Kaur S, Arora D, Rahul, Kandasami A, Singh DP (2019) Correlation among lattice strain, defect formation and luminescence properties of transition metal doped ZnO nano-crystals prepared via low temperature technique. Mater Res Express 6(11):115920–. https://doi.org/10.1088/2053-1591/ab4752

    Article  Google Scholar 

  84. Kahouadji B, Mebarki L, Benharrat L, Prakash J, Swart HC, Zoukel A, Ouhenia S, Lyes L, Guerbous L, Poelman D (2023) Flexible and luminescent polymer nanocomposite films (YPO4:Pr3+/polystyrene): Investigation of structural, morphological and photoluminescence properties for solid-state lighting applications. Opt Mater 143:114251. https://doi.org/10.1016/j.optmat.2023.114251

    Article  CAS  Google Scholar 

  85. Bouacheria MA, Djelloul A, Benharrat L, Adnane M, Bencherif H (2024) Electrical and Optical properties of ZnO: AL/P-Si Heterojunction Diodes. Acta Phys Polonica A 145:1. https://doi.org/10.12693/APhysPolA.145.47

    Article  Google Scholar 

  86. Semin OH, Youngshin KWAK (2018) Hue and warm-cool feeling as the visual resemblance criteria for iso-CCT judgment. Color Res Appl 44(2):155–316. https://doi.org/10.1002/col.22324

    Article  Google Scholar 

  87. Society of Light and Lighting (2009) The SLL lighting handbook. CIBSE, p 314. ISBN : 1906846022, 9781906846022.

Download references

Acknowledgements

This work was supported by the General Directorate for Scientific Research and Technological Development (Algerian Ministry of Higher Education).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Materials preparation, data collection, and analysis were performed by M.A., F.A., A.D., S.S., S.A., M.G., L.B., L.Z., S.K. The first draft of the manuscript was written by M.A., A.D., and all authors commented on previous versions of the manuscript. All authors have reviewed and approved the manuscript in its current form.

Corresponding author

Correspondence to A. Djelloul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayachi, M., Ayad, F., Djelloul, A. et al. Investigation of structural, morphological, and optical properties of (Ni/Co, Fe/Co, and Fe/Ni) co-doped ZnO thin films prepared by sol-gel spin coating technique. J Sol-Gel Sci Technol (2024). https://doi.org/10.1007/s10971-024-06376-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10971-024-06376-y

Keywords

Navigation