Skip to main content
Log in

High-performance ferroelectric photocatalysts for rapid dye degradation: ZrO2-doped LiTa0.5Nb0.5O3 under solar UV light

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The push to find new catalytic materials has intensified due to environmental concerns and the pressing issue of dye breakdown. In our research, we delve into the properties of ZrO2-doped LiTa0.5Nb0.5O3, a material made using a solid-state method. We extensively studied its structure, appearance, optical properties, dielectric areas, and surface conditions. Notably, Zr 5% composition exhibited an efficiently breaking down Rhodamine B (RhB) under simulated UV sunlight. In just an hour, it achieved a remarkable 98.2% degradation rate. This superior performance stems from active complexes forming on its surface and its impressive light absorption. Moreover, the degradation of RhB by this catalyst is boosted by the presence of reactive •O2¯ species generated during the process. Even after five rounds of testing, the catalyst retained an 81% efficiency rate. These results indicate the potential for creating efficient catalysts that can swiftly neutralize harmful dyes from water.

Graphical Abstract

Highlights

  • ZrO2-doped LiTa0.5Nb0.5O3, was successfully synthesized using a solid-state route.

  • Zr 5% composition, exhibited exceptional photocatalytic activity for the degradation of Rhodamine B (RhB) under simulated solar ultraviolet (UV) light.

  • The degradation efficiency reached 98.2% after 60 min of time.

  • It was discovered that the degradation of RhB over the ZrO2-doped LiTa0.5Nb0.5O3 photocatalyst was significantly enhanced by the presence of reactive species such as •O2¯.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Lachheb H, et al. (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania.

  2. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review. Ind Eng Chem Res 43:7683–7696. https://doi.org/10.1021/ie0498551.

    Article  CAS  Google Scholar 

  3. Mazkad D, et al. (2024) An innovative diatomite-polypyrrole composite for highly efficient Cr (VI) removal through optimized adsorption via surface response methodology. Colloids Surf A Physicochem Eng Asp. 133172. https://doi.org/10.1016/j.colsurfa.2024.133172.

  4. Li S et al. (2018) Fast photocatalytic degradation of dyes using low-power laser-fabricated Cu2O-Cu nanocomposites. RSC Adv 8(36):20277–20286. https://doi.org/10.1039/c8ra03117g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Behrens H, Beims U, Dieter H et al. (2001) Toxicological and ecotoxicological assessment of water tracers. Hydrogeology J 9:321–325. https://doi.org/10.1007/s100400100126

    Article  CAS  Google Scholar 

  6. Xu H, Ouyang S, Liu L, Reunchan P, Umezawa N, Ye J (2014) Recent advances in TiO2-based photocatalysis. J Mater Chem A 2:12642–12661. https://doi.org/10.1039/c4ta00941j

    Article  CAS  Google Scholar 

  7. Lv C et al. (2017) Oxygen-Induced Bi5+-Self-Doped Bi4V2O11 with a p-n homojunction toward promoting the photocatalytic performance. ACS Appl Mater Interfaces 9:23748–23755. https://doi.org/10.1021/acsami.7b05302

    Article  CAS  PubMed  Google Scholar 

  8. Zhang B et al. (2017) Doping strategy to promote the charge separation in BiVO4 photoanodes. Appl Catal B 211:258–265. https://doi.org/10.1016/j.apcatb.2017.03.078

    Article  CAS  Google Scholar 

  9. Sun T, Zhao Z, Liang Z, Liu J, Shi W, Cui F (2017) Efficient removal of arsenite through photocatalytic oxidation and adsorption by ZrO 2 -Fe 3 O 4 magnetic nanoparticles. Appl Surf Sci 416:656–665. https://doi.org/10.1016/j.apsusc.2017.04.137

    Article  CAS  Google Scholar 

  10. Chen X, Liu Y, Xia X, Wang L (2017) Popcorn balls-like ZnFe 2 O 4 -ZrO 2 microsphere for photocatalytic degradation of 2,4-dinitrophenol. Appl Surf Sci 407:470–478. https://doi.org/10.1016/j.apsusc.2017.02.198

    Article  CAS  Google Scholar 

  11. Zhu LY, Wang XQ, Zhang GH, Ren Q, Xu D (2011) Structural characterization and photocatalytic activity of B2O3/ZrO2-TiO2 mesoporous fibers. Appl Catal B 103:428–435. https://doi.org/10.1016/j.apcatb.2011.02.006

    Article  CAS  Google Scholar 

  12. Meng X, Zhuang Y, Tang H, Lu C (2018) Hierarchical structured ZnFe2O4@SiO2@TiO2 composite for enhanced visible-light photocatalytic activity. J Alloy Compd 761:15–23. https://doi.org/10.1016/j.jallcom.2018.05.150

    Article  CAS  Google Scholar 

  13. Tang Q, Meng X, Wang Z, Zhou J, Tang H (2018) One-step electrospinning synthesis of TiO 2 /g-C 3 N 4 nanofibers with enhanced photocatalytic properties. Appl Surf Sci 430:253–262. https://doi.org/10.1016/j.apsusc.2017.07.288

    Article  CAS  Google Scholar 

  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. N. Ser 293(5528):269–271. https://doi.org/10.1126/science.l

    Article  CAS  Google Scholar 

  15. Wang X, Yu JC, Chen Y, Wu L, Fu X (2006) ZrO2-modified mesoporous nanocrystalline TiO2-xN x as efficient visible light photocatalysts. Environ Sci Technol 40:2369–2374. https://doi.org/10.1021/es052000a

    Article  CAS  PubMed  Google Scholar 

  16. Yang X, Qin J, Jiang Y, Li R, Li Y, Tang H (2014) Bifunctional TiO2/Ag3PO4/graphene composites with superior visible light photocatalytic performance and synergistic inactivation of bacteria. RSC Adv 4(36):18627–18636. https://doi.org/10.1039/c4ra01559b

    Article  CAS  Google Scholar 

  17. Malefane ME (2020) Co3O4/Bi4O5I2/Bi5O7I C-scheme heterojunction for degradation of organic pollutants by light-emitting diode irradiation. ACS Omega 5:26829–26844. https://doi.org/10.1021/acsomega.0c03881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malefane ME, Ntsendwana B, Mafa PJ, Mabuba N, Feleni U, Kuvarega AT (2019) In-Situ Synthesis of Tetraphenylporphyrin/Tungsten (VI) Oxide/Reduced Graphene Oxide (TPP/WO3/RGO) nanocomposite for visible light photocatalytic degradation of acid blue 25. ChemistrySelect 4:8379–8389. https://doi.org/10.1002/slct.201901589

    Article  CAS  Google Scholar 

  19. Park S et al. (2014) A ferroelectric photocatalyst for enhancing hydrogen evolution: Polarized particulate suspension. Phys Chem Chem Phys 16:10408–10413. https://doi.org/10.1039/c4cp01267d

    Article  CAS  PubMed  Google Scholar 

  20. Ravez J, Hagenmuller P (1984) Comparative study of crystallographic and ferroelectric properties of the non-stoichiometric Linbo3 type phases in the ternary diagrams Li2O-M2O5-(M’O2)2 (M=Nb,Ta; M’=Ti,Zr). Ferroelectrics 56:21–24. https://doi.org/10.1080/00150198408012710

    Article  Google Scholar 

  21. Elouadi B, Khiat K (1994) Studies of quenched and slowly cooled LiTaO3-related phases of the ternary system Li2O-Ta2O5-(CuO)2. Ferroelectrics 158:25–30. https://doi.org/10.1080/00150199408215988

    Article  CAS  Google Scholar 

  22. Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO2 photocatalyst for environmental applications. J Photochem Photobiol C: Photochem Rev 15:1–20. https://doi.org/10.1016/j.jphotochemrev.2012.10.001

    Article  CAS  Google Scholar 

  23. Razeghi M, Rogalski A (1996) Semiconductor ultraviolet detectors. J Appl Phys 79:7433–7473. https://doi.org/10.1063/1.362677.

    Article  CAS  Google Scholar 

  24. Fu H, Pan C, Yao W, Zhu Y (2005) Visible-light-induced degradation of rhodamine B by nanosized Bi 2WO6. J Phys Chem B 109:22432–22439. https://doi.org/10.1021/jp052995j

    Article  CAS  PubMed  Google Scholar 

  25. Lei P, Chen C, Yang J, Ma W, Zhao J, Zang L (2005) Degradation of dye pollutants by immobilized polyoxometalate with H 2O2 under visible-light irradiation. Environ Sci Technol 39:8466–8474. https://doi.org/10.1021/es050321g

    Article  CAS  PubMed  Google Scholar 

  26. He Z, Sun C, Yang S, Ding Y, He H, Wang Z (2009) Photocatalytic degradation of rhodamine B by Bi2WO6 with electron accepting agent under microwave irradiation: Mechanism and pathway. J Hazard Mater 162:1477–1486. https://doi.org/10.1016/j.jhazmat.2008.06.047

    Article  CAS  PubMed  Google Scholar 

  27. Moussadik A et al. (2023) Investigation of electronic and photocatalytic properties of AgTi2(PO4)3 NASICON-type phosphate: Combining experimental data and DFT calculations. J Photochem Photobio A Chem 435:114289. https://doi.org/10.1016/j.jphotochem.2022.114289

    Article  CAS  Google Scholar 

  28. Cui Y, Briscoe J, Dunn S (2013) Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3 - Influence on the carrier separation and stern layer formation. Chem Mater 25:4215–4223. https://doi.org/10.1021/cm402092f

    Article  CAS  Google Scholar 

  29. Mazkad D, et al. (2023) Photocatalytic properties insight of Sm-doped LiNbO3 in ferroelectric Li1− xNbSm1/3xO3 system. J Environ Chem Eng 11. https://doi.org/10.1016/j.jece.2023.109732.

  30. Shirley DA(1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5(12):4709. https://doi.org/10.1103/PhysRevB.5.4709

    Article  Google Scholar 

  31. Chandra N, Singh DK, Sharma M, Upadhyay RK, Amritphale SS, Sanghi SK (2010) Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation. J Colloid Interface Sci 342:327–332. https://doi.org/10.1016/j.jcis.2009.10.065

    Article  CAS  PubMed  Google Scholar 

  32. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  33. Miller RC, Savage A (1966) Temperature dependence of the optical properties of ferroelectric LiNbO3 and LiTaO3. Appl Phys Lett 9(4):169–171. https://doi.org/10.1063/1.1754695

    Article  CAS  Google Scholar 

  34. Reddy CV, Shim J, Cho M (2017) Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles. J Phys Chem Solids 103:209–217. https://doi.org/10.1016/j.jpcs.2016.12.011

    Article  CAS  Google Scholar 

  35. Malefane ME, Mafa PJ, Nkambule TTI, Managa ME, Kuvarega AT (2023) Modulation of Z-scheme photocatalysts for pharmaceuticals remediation and pathogen inactivation: Design devotion, concept examination, and developments. Chem Eng J 452:138894. https://doi.org/10.1016/j.cej.2022.138894.

  36. Malefane ME, Mafa PJ, Mamba PP, Managa M, Nkambule TTI, Kuvarega AT (2024) Induced S-scheme CoMn-LDH/C-MgO for advanced oxidation of amoxicillin under visible light. Chem Eng J 480:148250. https://doi.org/10.1016/j.cej.2023.148250

    Article  CAS  Google Scholar 

  37. Hornsveld N, Put B, Kessels WMM, Vereecken PM, Creatore M (2017) Plasma-assisted and thermal atomic layer deposition of electrochemically active Li2CO3. RSC Adv 7(66):41359–41368. https://doi.org/10.1039/c7ra07722j

    Article  CAS  Google Scholar 

  38. Li XL et al. (2010) Preparation and characterization of mesoporous SnO2-pillared HTaWO6 with enhanced photocatalytic activity. J Mater Chem 20(19):3924–3931. https://doi.org/10.1039/b924005e

    Article  CAS  Google Scholar 

  39. Chandra SVJ, Uthanna S, Rao GM (2008) Effect of substrate temperature on the structural, optical and electrical properties of dc magnetron sputtered tantalum oxide films. Appl Surf Sci 254:1953–1960. https://doi.org/10.1016/j.apsusc.2007.08.005

    Article  CAS  Google Scholar 

  40. Cho H et al. (2014) Investigation of strong metallic Ta reduction in ZrO 2 /Ta 2 O 5 multi-laminate layer growth. ECS Trans 61:21–25. https://doi.org/10.1149/06102.0021ecst

    Article  CAS  Google Scholar 

  41. Zhao W, Zhao W, Zhu G, Lin T, Xu F, Huang F (2016) Black Nb2O5 nanorods with improved solar absorption and enhanced photocatalytic activity. Dalton Trans 45(9):3888–3894. https://doi.org/10.1039/c5dt04578a

    Article  CAS  PubMed  Google Scholar 

  42. Vignesh K, Suganthi A, Min BK, Kang M (2015) Fabrication of meso-porous BiOI sensitized zirconia nanoparticles with enhanced photocatalytic activity under simulated solar light irradiation. Appl Surf Sci 324:652–661. https://doi.org/10.1016/j.apsusc.2014.11.004

    Article  CAS  Google Scholar 

  43. Reddy CV, Reddy IN, Akkinepally B, Harish VVN, Reddy KR, Jaesool S (2019) Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation. Ceram Int 45:15298–15306. https://doi.org/10.1016/j.ceramint.2019.05.020

    Article  CAS  Google Scholar 

  44. Si W, Wang Y, Peng Y, Li X, Li K, Li J (2015) A high-efficiency γ-MnO2-like catalyst in toluene combustion. Chem Commun 51:14977–14980. https://doi.org/10.1039/c5cc04528b

    Article  CAS  Google Scholar 

  45. Si W, Wang Y, Peng Y, Li J (2015) Selective dissolution of A-site cations in ABO3 perovskites: a new path to high-performance catalysts. Angew Chem - Int Ed 54:7954–7957. https://doi.org/10.1002/anie.201502632

    Article  CAS  Google Scholar 

  46. Ait ahsaine H et al. (2016) Electronic band structure and visible-light photocatalytic activity of Bi2WO6: Elucidating the effect of lutetium doping. RSC Adv 6(103):101105–101114. https://doi.org/10.1039/c6ra22669h

    Article  CAS  Google Scholar 

  47. Mousavi M, Habibi-Yangjeh A, Abitorabi M (2016) Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation. J Colloid Interface Sci 480:218–231. https://doi.org/10.1016/j.jcis.2016.07.021

    Article  CAS  PubMed  Google Scholar 

  48. Kannan K, et al. (2021) Photocatalytic and antimicrobial properties of microwave synthesized mixed metal oxide nanocomposite. Inorg Chem Commun. 125 https://doi.org/10.1016/j.inoche.2020.108429.

  49. Malefane ME, Feleni U, Kuvarega AT (2020) Cobalt (II/III) oxide and tungsten (VI) oxide p-n heterojunction photocatalyst for photodegradation of diclofenac sodium under visible light. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2019.103560

  50. Natarajan TS, Thomas M, Natarajan K, Bajaj HC, Tayade RJ (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134. https://doi.org/10.1016/j.cej.2011.02.066

    Article  CAS  Google Scholar 

  51. Moussadik A, et al.. 2024, Self-grown Ag2O nanoparticles on Ag-NASICON material for efficient visible light photocatalysis. Opt Mater (Amst). 148. https://doi.org/10.1016/j.optmat.2023.114803.

  52. Lun M et al. (2021) Ferroelectric K0.5Na0.5NbO3 catalysts for dye wastewater degradation. Ceram Int 47:28797–28805. https://doi.org/10.1016/j.ceramint.2021.07.040

    Article  CAS  Google Scholar 

  53. Fu Q et al. (2016) Enhanced photocatalytic activity on polarized ferroelectric KNbO3. RSC Adv 6(110):108883–108887. https://doi.org/10.1039/c6ra23344a

    Article  CAS  Google Scholar 

  54. Wang Y, Zhang M, Wu J, Hu Z, Zhang H, Yan H (2021) Ferroelectric and photocatalytic properties of Aurivillius phase Ca2Bi4Ti5O18. J Am Ceram Soc 104:322–328. https://doi.org/10.1111/jace.17466

    Article  CAS  Google Scholar 

  55. Qi W, Wang Y, Wu J, Hu Z, Jia C, Zhang H (2019) Relaxor ferroelectric and photocatalytic properties of BaBi4Ti4O15. Adv Appl Ceram 118:418–424. https://doi.org/10.1080/17436753.2019.1634943

    Article  CAS  Google Scholar 

  56. Zhu M, et al. (2021) Diffused phase transition boosted dye degradation with Ba (ZrxTi1−x)O3 solid solutions through piezoelectric effect. Nano Energy 89. https://doi.org/10.1016/j.nanoen.2021.106474

Download references

Acknowledgements

This study is supported via funding from Prince sattam bin Abdulaziz University project number (PSAU/2023/R/1445) and the national center for scientific and technical research CNRST.

Author contributions

Category 1 Conception and design of study: Nour-eddine Lazar, Yassine Riadi, Driss Mazkad, acquisition of data: Nour-eddine Lazar, Driss Mazkad, Ali Moussadik, Mohamed El Habib Hitar, Abdellah Benzaouak, Noureddine Touach, Jimmy Nicolle, Benoît Cagnon, Fatma Yalcinkaya, Yassine Riadi, Manal A. Alossaimi, Mohammed El Mahi, El Mostapha Lotfi. analysis and/or interpretation of data: Nour-eddine Lazar, Driss Mazkad, Ali Moussadik, Mohamed El Habib Hitar, Abdellah Benzaouak, Noureddine Touach, Jimmy Nicolle, Benoît Cagnon, Fatma Yalcinkaya, Yassine Riadi, Manal A. Alossaimi, Mohammed El Mahi, El Mostapha Lotfi, Category 2 Drafting the manuscript: Nour-eddine Lazar, Yassine Riadi, Mohammed El Mahi, El Mostapha Lotfi, revising the manuscript critically for important intellectual content Nour-eddine Lazar, Yassine Riadi, Mohammed El Mahi, El Mostapha Lotfi, Category 3 Approval of the version of the manuscript to be published (the names of all authors must be listed): our-eddine Lazar, Driss Mazkad, Ali Moussadik, Mohamed El Habib Hitar, Abdellah Benzaouak, Noureddine Touach, Jimmy Nicolle, Benoît Cagnon, Fatma Yalcinkaya, Yassine Riadi, Manal A. Alossaimi, Mohammed El Mahi, El Mostapha Lotfi, Acknowledgements All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are named in the Acknowledgements and have given us their written permission to be named. If we have not included an Acknowledgements, then that indicates that we have not received substantial contributions from non-authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nour-eddine Lazar or Yassine Riadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazar, Ne., Mazkad, D., Moussadik, A. et al. High-performance ferroelectric photocatalysts for rapid dye degradation: ZrO2-doped LiTa0.5Nb0.5O3 under solar UV light. J Sol-Gel Sci Technol 110, 233–245 (2024). https://doi.org/10.1007/s10971-024-06330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06330-y

Keywords

Navigation