Skip to main content
Log in

Facile synthesis of magnetic-fluorescent iron oxide-geothermal silica core/shell nanocomposites via modified sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study successfully synthesizes magnetic fluorescent iron oxide silica core/shell nanocomposites (MFSNC) derived from natural geothermal silica. The nanostructures comprise an iron-oxide core and a fluorescent mesoporous silica outer layer. X-ray diffraction (XRD) analysis indicated diffraction peaks of amorphous silica with crystallites of magnetite types in the MFSNC samples. Transmission electron microscopy combined with energy-disperse X-ray spectroscopy were used to observe the morphological structure, which showed nanoparticles of MFSNC with Fe, Si, O, and N elements. Among varying ratios of ferric salts, the MFSNP0.5 sample exhibited the highest fluorescence intensity (280.5073 a.u.). It demonstrated superior fluorescence stability in water (pH = 7) compared to other samples, as investigated by fluorescence spectrophotometer. Additionally, this sample displayed ferromagnetic properties, with a magnetic saturation (MS) of 14.57 emu/g and a loop area value of 0.7 kOe.emu/g, determined by the vibrating sample magnetometry. This work details the successful synthesis of MFSNC nanocomposites with tailored magnetic and fluorescent properties. Notably, the MFSNC0.5 sample stands out for its superior fluorescence intensity, stability in water, and desirable ferromagnetic characteristics.

Graphical Abstract

Highlights

  • Synthesizes magnetic fluorescent iron oxide silica core/shell nanocomposites (MFSNC) derived from natural geothermal silica.

  • MFSNC0.5 sample stands out for its superior fluorescence intensity, stability in water, and desirable ferromagnetic characteristics.

  • MFSNC displayed ferromagnetic properties, with a magnetic saturation (MS) of 14.57 emu/g and a loop area value of 0.7 kOe.emu/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jenie SNA, Kristiani A, Sudiyarmanto DS, Khaerudini K, dan Takeishi (2020) Sulfonated magnetic nanobiochar as heterogeneous acid catalyst for esterification reaction. J Environ Chem Eng 8:103912. https://doi.org/10.1016/j.jece.2020.103912

    Article  CAS  Google Scholar 

  2. Lokhat D, Brijlal S, Naidoo DE, Premraj C, dan Kadwa E (2022) Synthesis of size-and-shape-controlled iron oxide nanoparticles via coprecipitation and in situ magnetic separation. Ind Eng Chem Res 61:16980–16991. https://doi.org/10.1021/acs.iecr.2c02350

    Article  CAS  Google Scholar 

  3. Escoda-Torroella M, Moya C, Rodríguez AF, Batlle X, dan Labarta A (2021) Selective control over the morphology and the oxidation state of iron oxide nanoparticles. Langmuir 37:35–45. https://doi.org/10.1021/acs.langmuir.0c02221

    Article  CAS  PubMed  Google Scholar 

  4. Abdelaziz MM, Hefnawy A, Anter A, Abdellatif MM, Khalil MAF, dan Khalil IA (2022) Silica-coated magnetic nanoparticles for vancomycin conjugation. ACS Omega 7:30161–30170. https://doi.org/10.1021/acsomega.2c03226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sanna Angotzi M, Mameli V, Zákutná D, Rusta N, dan Cannas C (2023) On the thermal and hydrothermal stability of spinel iron oxide nanoparticles as single and core-shell hard-soft phases. J Alloy Compd 940:168909. https://doi.org/10.1016/j.jallcom.2023.168909

    Article  CAS  Google Scholar 

  6. Sodipo BK, dan Aziz AA (2016) Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica. J Magn Magn Mater 416:275–291. https://doi.org/10.1016/j.jmmm.2016.05.019

    Article  CAS  Google Scholar 

  7. Sabale S, Khot V, Jadhav V, Zhu X, dan Xu Y (2014) Synthesis and properties of monodisperse superparamagnetic Mg0.8Mn0.2Fe2O4 nanoparticles using polyol reflux method. Acta Metall Sin Engl Lett 27:1122–1126. https://doi.org/10.1007/s40195-014-0139-y

    Article  CAS  Google Scholar 

  8. Miguel MG, Lourenço JP, dan Faleiro ML (2020) Superparamagnetic iron oxide nanoparticles and essential oils: a new tool for biological applications. Int J Mol Sci 21:6633. https://doi.org/10.3390/ijms21186633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kohaku K, Inoue M, Kanoh H, Taniguchi T, Kishikawa K, dan Kohri M (2020) Full-color magnetic nanoparticles based on holmium-doped polymers. ACS Appl Polym Mater 2:1800–1806. https://doi.org/10.1021/acsapm.0c00038

    Article  CAS  Google Scholar 

  10. Han Q (2019) Controllable fabrication of magnetic core–shell nanocomposites with high peroxide mimetic properties for bacterial detection and antibacterial applications. J Mater Chem B 7:1124–1132. https://doi.org/10.1039/C8TB02834F

    Article  CAS  PubMed  Google Scholar 

  11. Khalid A, Ahmed RM, Taha M, dan Soliman TS (2023) Fe3O4 nanoparticles and Fe3O4 @SiO2 core-shell: synthesize, structural, morphological, linear, and nonlinear optical properties. J Alloy Compd 947:169639. https://doi.org/10.1016/j.jallcom.2023.169639

    Article  CAS  Google Scholar 

  12. Fatimah I (2022) Magnetic-silica nanocomposites and the functionalized forms for environment and medical applications: a review. Inorg Chem Commun 137:109213. https://doi.org/10.1016/j.inoche.2022.109213

    Article  CAS  Google Scholar 

  13. Stolyar SV (2022) Manifestation of stoichiometry deviation in silica-coated magnetite nanoparticles. J Phys Chem C 126:7510–7516. https://doi.org/10.1021/acs.jpcc.2c00349

    Article  CAS  Google Scholar 

  14. Ghosh A, Srinivas V, Kavita S, dan Sundara R (2022) Evolution of microstructure and magnetic properties from amorphous Fe3O4/SiO2 nanocomposite. J Magn Magn Mater 561:169687. https://doi.org/10.1016/j.jmmm.2022.169687

    Article  CAS  Google Scholar 

  15. Ali Z, Andreassen J-P, dan Bandyopadhyay S (2023) Fine-tuning of particle size and morphology of silica coated iron oxide nanoparticles. Ind Eng Chem Res 62:4831–4839. https://doi.org/10.1021/acs.iecr.2c03338

    Article  CAS  Google Scholar 

  16. Souza KC, Mohallem NDS, dan Sousa EMB (2010) Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. J Sol Gel Sci Technol 53:418–427. https://doi.org/10.1007/s10971-009-2115-y

    Article  CAS  Google Scholar 

  17. Sabale S, Jadhav V, Mane-Gavade S, dan Yu X-Y (2019) Superparamagnetic CoFe2O4@Au with high specific absorption rate and intrinsic loss power for magnetic fluid hyperthermia applications. Acta Metall Sin Engl Lett 32:719–725. https://doi.org/10.1007/s40195-018-0830-5

    Article  CAS  Google Scholar 

  18. Elmaria FA, dan Jenie SNA (2021) Magnetic nanoparticles based on natural silica as a methyl ester forming acid catalyst. J Kim Terap Indones 23:49–54. https://doi.org/10.14203/inajac.v23i2.473

    Article  Google Scholar 

  19. DA Widyasari, Conjugation of E. coli antibody with fluorescent natural silica-based nanoparticles: preparation and characterization, dipresentasikan pada. In Proceedings of the 4th international seminar on metallurgy and materials (ISMM2020): accelerating research and innovation on metallurgy and materials for inclusive and sustainable industry, Tangerang Selatan, Indonesia, 2021, 030009. https://doi.org/10.1063/5.0060386.

  20. V Gubala, G Giovannini, F Kunc, MP Monopoli, CJ dan Moore Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnol 11 2020. https://doi.org/10.1186/s12645-019-0056-x.

  21. He H, Sun D-W, Wu Z, Pu H, dan Wei Q (2022) On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci Technol 119:243–256. https://doi.org/10.1016/j.tifs.2021.11.029

    Article  CAS  Google Scholar 

  22. Rong H, Gao T, dan Zhang X (2020) Improved fluorescence stability for Fe3O4/silica @fluorescein/dense silica structure with double shell. Compos Commun 20:100368. https://doi.org/10.1016/j.coco.2020.100368

    Article  Google Scholar 

  23. Jenie ASN (2020) Geothermal silica-based fluorescent nanoparticles for the visualization of latent fingerprints. Mater Express 10:258–266. https://doi.org/10.1166/mex.2020.1551

    Article  CAS  Google Scholar 

  24. Sifana NO, dan Jenie SNA (2022) Fabrication and characterization of FITC-modified naturalbased silica nanoparticles using sol-gel method. IOP Conf Ser Earth Environ Sci 963:012025. https://doi.org/10.1088/1755-1315/963/1/012025

    Article  Google Scholar 

  25. Silviana S (2022) Superhydrophobic coating based on silica derived from bagasse modified with vinyltriethoxysilane and copper (Cu) as antibacterial agent. IOP Conf Ser Earth Environ Sci 963:012023. https://doi.org/10.1088/1755-1315/963/1/012023

    Article  Google Scholar 

  26. Selvaraj R (2022) A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere 308:136331. https://doi.org/10.1016/j.chemosphere.2022.136331

    Article  CAS  PubMed  Google Scholar 

  27. Polla MB (2023) Low-temperature sol–gel synthesis of magnetite superparamagnetic nanoparticles: Influence of heat treatment and citrate–nitrate equivalence ratio. Ceram Int 49:7322–7332. https://doi.org/10.1016/j.ceramint.2022.10.182

    Article  CAS  Google Scholar 

  28. Sharma RK (2023) Influence of chemical and bio-surfactants on physiochemical properties in mesoporous silica nanoparticles synthesis. J Mater Res Technol 24:2629–2639. https://doi.org/10.1016/j.jmrt.2023.03.170

    Article  CAS  Google Scholar 

  29. Jenie SNA (2021) Rapid fluorescence quenching detection of Escherichia coli using natural silica-based nanoparticles. Sensors 21:881. https://doi.org/10.3390/s21030881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Syakina AN, dan Rahmayanti M (2023) Removal of methyl violet from aqueous solutions by green synthesized magnetite nanoparticles with Parkia Speciosa Hassk. peel extracts. Chem Data Collect 44:101003. https://doi.org/10.1016/j.cdc.2023.101003

    Article  CAS  Google Scholar 

  31. Feng T (2023) Engineering Ru nanoparticles embedded in 2D N-doped carbon nanosheets decorated with 2D Fe3O4–Fe3C heterostructures for efficient hydrogen evolution in alkaline and acidic media. Int J Hydrog Energy 48:15522–15532. https://doi.org/10.1016/j.ijhydene.2023.01.022

    Article  CAS  Google Scholar 

  32. Kornilitsina EV (2023) Enhanced electrodynamic properties acrylonitrile butadiene styrene composites containing short-chopped recycled carbon fibers and magnetite. Diam Relat Mater 135:109814. https://doi.org/10.1016/j.diamond.2023.109814

    Article  CAS  Google Scholar 

  33. Tian Y (2021) Aptamer modified magnetic nanoparticles coupled with fluorescent quantum dots for efficient separation and detection of Alicyclobacillus acidoterrestris in fruit juices. Food Control 126:108060. https://doi.org/10.1016/j.foodcont.2021.108060

    Article  CAS  Google Scholar 

  34. Wu X, dan Nan Z (2019) Degradation of rhodamine B by a novel Fe3O4/SiO2 double-mesoporous-shelled hollow spheres through photo-Fenton process. Mater Chem Phys 227:302–312. https://doi.org/10.1016/j.matchemphys.2019.02.023

    Article  CAS  Google Scholar 

  35. Koesnarpadi S, Santosa SJ, Siswanta D, dan Rusdiarso B (2017) Humic acid coated Fe3O4 nanoparticle for phenol sorption. Indones J Chem 17:274. https://doi.org/10.22146/ijc.22545

    Article  CAS  Google Scholar 

  36. Yang L (2021) Fluorescent core-shell SiO2@vertical covalent organic frameworks nanosheets for sensing application. Sens Actuators B Chem 341:129995. https://doi.org/10.1016/j.snb.2021.129995

    Article  CAS  Google Scholar 

  37. Sandler SE, Fellows B, dan Mefford OT (2019) Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal Chem 91:14159–14169. https://doi.org/10.1021/acs.analchem.9b03518

    Article  CAS  PubMed  Google Scholar 

  38. Nisticò R (2021) A synthetic guide toward the tailored production of magnetic iron oxide nanoparticles. Bol Soc Esp Cerám Vidr 60:29–40. https://doi.org/10.1016/j.bsecv.2020.01.011

    Article  CAS  Google Scholar 

  39. Ma Z, Mohapatra J, Wei K, Liu JP, dan Sun S (2023) Magnetic nanoparticles: synthesis, anisotropy, and applications. Chem Rev 123:3904–3943. https://doi.org/10.1021/acs.chemrev.1c00860

    Article  CAS  PubMed  Google Scholar 

  40. Aliya S (2023) Phytogenic fabrication of iron oxide nanoparticles and evaluation of their in vitro antibacterial and cytotoxic activity. Arab J Chem 16:104703. https://doi.org/10.1016/j.arabjc.2023.104703

    Article  CAS  Google Scholar 

  41. Huang Z (2019) A novel method based on fluorescent magnetic nanobeads for rapid detection of Escherichia coli O157:H7. Food Chem 276:333–341. https://doi.org/10.1016/j.foodchem.2018.09.164

    Article  CAS  PubMed  Google Scholar 

  42. Halevas E (2020) Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J Inorg Biochem 213:111271. https://doi.org/10.1016/j.jinorgbio.2020.111271

    Article  CAS  PubMed  Google Scholar 

  43. Wang M, dan Deng M (2022) Synthesis and characterization of fluorescent magnetic Fe3O4/CdTe@SiO2-NH-FA nanoprobe. Mater Lett 309:131358. https://doi.org/10.1016/j.matlet.2021.131358

    Article  CAS  Google Scholar 

  44. Lacerda Fernandes Í (2022) Synthesis and characterization of the MNP@SiO2@TiO2 nanocomposite showing strong photocatalytic activity against methylene blue dye. Appl Surf Sci 580:152195. https://doi.org/10.1016/j.apsusc.2021.152195

    Article  CAS  Google Scholar 

  45. Fahmy HM, Saad OA, dan Fathy MM (2023) Insight into the photothermal therapeutic impacts of silica-coated iron oxide nanocomposites. J Drug Deliv Sci Technol 84:104540. https://doi.org/10.1016/j.jddst.2023.104540

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the JFS SEA-EU/ NAPARBA Project Grant no. SEA-EUROPE JFS19 ST-117 and the BRIN Riset & Inovasi untuk Indonesia Maju (RIIM) Grant No. 19/II.7/HK/2023. The authors acknowledge the facilities, scientific and technical support from the Advanced Characterization Laboratories of the National Research and Innovation Agency (BRIN) through E-Layanan Sains. SNAJ is the main contributor of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himawan Tri Murti Bayu Petrus.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmaria, F.A., Aulia, F., Hidayati, L.N. et al. Facile synthesis of magnetic-fluorescent iron oxide-geothermal silica core/shell nanocomposites via modified sol–gel method. J Sol-Gel Sci Technol 110, 27–36 (2024). https://doi.org/10.1007/s10971-024-06318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-024-06318-8

Keywords

Navigation