Skip to main content
Log in

Improved performances in Sb2Se3 solar cells based on CdS buffered TiO2 electron transport layer

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The strong Ti-O bonds in TiO2 and poor compatibility with Sb2Se3 result in poor performance when used as electron transport layers (ETL) for Sb2Se3 solar cells. Therefore, cadmium sulfide is usually used as a buffer layer to improve its compatibility. In the present work, we deposited a layer of CdS by spin coating method on TiO2 ETL and fabricated TiO2/CdS dual ETL. The CdS layer improved the electronic properties of TiO2 and grain orientation of Sb2Se3 thin films. As a result, the average short circuit current and fill factor of Sb2Se3 solar cells were improved, and the final champion power conversion efficiency was enhanced from 2.6% to 4.71%. This study supplied a route for the application of titanium dioxide as a broad band gap electron transfer material for Sb2Se3 solar cells.

Graphical Abstract

In this work, we deposited a 120 nm CdS layer on TiO2 ETL. The CdS layer improved the electronic properties of TiO2 and optimized the grain orientation of Sb2Se3 thin films. The Jsc and Voc of Sb2Se3 solar cells were also improved, and the ultimate champion power conversion efficiency was enhanced from 2.60 to 4.71%. Our work provides an effective method to improve the photovoltaic performance of Sb2Se3 solar cells.

Highlights

  • We adopt a facile spin-coating method to fabricated CdS buffer layer on TiO2 electron transport layer.

  • The CdS buffer layer altered the orientation of Sb2Se3 film and enhanced its performance.

  • The champion PCE of Sb2Se3 solar cells was enhanced to 4.71% from 2.60% by inserting the CdS buffer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen C, Li K, Tang J (2022) Ten years of Sb2Se3 thin film solar cells. Sol RRL 6(7):2200094

    Article  CAS  Google Scholar 

  2. Fares RL, Webber ME (2017) The impacts of storing solar energy in the home to reduce reliance on the utility. Nat Energy 2:17001

    Article  CAS  Google Scholar 

  3. Hussain A, Arif SM, Aslam M (2017) Emerging renewable and sustainable energy technologies: State of the art. Renew Sust Energ Rev 71:12–28

    Article  Google Scholar 

  4. Shah DK, KC D, Umar A, Algadi H, Akhtar MS, Yang OB (2022) Influence of Efficient Thickness of Antireflection Coating Layer of HfO2 for Crystalline Silicon Solar Cell. Inorganics 10(10):171

    Article  CAS  Google Scholar 

  5. Shah DK, KC D, Kim TG, Akhtar MS, Kim CY, Yang OB (2022) In-Search of Efficient Anti-Reflection Coating Layer for Crystalline Silicon Solar Cells: Optimization of the Thickness of Niobium Pentoxide Thin Layer. Engineered Sci 18:243–252

    CAS  Google Scholar 

  6. Shah DK, Choi J, KC D, Akhtar MS, Kim CY, Yang OB (2021) Refined optoelectronic properties of silicon nanowires for improving photovoltaic properties of crystalline solar cells: a simulation study. J Mater Sci: Mater Electron 32:2784–2795

    CAS  Google Scholar 

  7. Parajuli D, KC D, Khattri KB, Adhikari DR, Gaib RA, Shah DK (2023) Numerical assessment of optoelectrical properties of ZnSe-CdSe solar cell-based with ZnO antireflection coating layer. Sci Rep. 13:12193

    Article  CAS  Google Scholar 

  8. Shah DK, KC D, Akhtar MS, Kim CY, Yang OB (2020) Vertically Arranged Zinc Oxide Nanorods as Antireflection Layer for Crystalline Silicon Solar Cell: A Simulation Study of Photovoltaic Properties. Appl Sci 10(17):6062

    Article  CAS  Google Scholar 

  9. Shah DK, KC D, Choi J, Kang SH, Akhtar MS, Kim CY, Yang OB (2022) Determinantal study on the thickness of graphene oxide as ARC layer for silicon solar cells using: A simulation approach. Mater Sci Semiconductor Process 147:106695

    Article  CAS  Google Scholar 

  10. Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang H, Hou M, Farooq U, Huang J, Sun K, Webster R, Wu H, Chen Z, Yi F, Song H, Hao X, Tang J (2019) Quasiepitaxy Strategy for Efficient Full‐Inorganic Sb2Se3 Solar Cells. Adv Funct Mater 29(31):1901720

    Article  Google Scholar 

  11. Su M, Feng Z, Feng Z, Chen H, Liu X, Wen J, Liu H (2021) Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell. J Alloy Compd 882:160707

    Article  CAS  Google Scholar 

  12. Liu SC, Li Z, Wu J, Zhang X, Feng M, Xue D, Hu J (2021) Boosting the efficiency of GeSe solar cells by low-temperature treatment of p-n junction. Sci China-Mater 64(9):2118–2126

    Article  CAS  Google Scholar 

  13. Yun HS, Park B, Choi YC, Im J, Shin TJ, Seok SI (2019) Efficient Nanostructured TiO2/SnS Heterojunction Solar Cells. Adv Energy Mater 9(35):1901343

    Article  Google Scholar 

  14. Cao M, Zhang X, Ren J, Sun Y, Cui Y, Zhang J, Ling J, Huang J, Shen Y, Wang L, Dai N (2021) Chemical bath deposition of SnS: Cu/ZnS for solar hydrogen production and solar cells. J Alloy Compd 863:158727

    Article  CAS  Google Scholar 

  15. Yang K, Li B, Zeng G (2020) Sb2Se3 thin film solar cells prepared by pulsed laser deposition. J Alloy Compd 821:153505

    Article  CAS  Google Scholar 

  16. Yang W, Kim JH, Hutter OS, Phillips LJ, Tan J, Park J, Lee H, Major JD, Lee JS, Moon J (2020) Benchmark performance of low-cost Sb2Se3 photocathodes for unassisted solar overall water splitting. Nat Commun 11(1):861

    Article  CAS  Google Scholar 

  17. Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J (2018) Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency. Nat Commun 9:2179

    Article  Google Scholar 

  18. Li Z, Liang X, Li G, Liu H, Zhang H, Guo J, Chen J, Shen K, San X, Yu W, Schropp REI, Mai Y (2019) 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat Commun 10(1):125

    Article  Google Scholar 

  19. Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D, Luo M, Cao Y, Cheng Y, Sargent EH, Tang J (2015) Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat Photonics 9(6):409–415

    Article  CAS  Google Scholar 

  20. Xin C, Cheng Y, Zhao J, Gong M, Zhang W, Sun Q, Miao H, Hu X (2022) Coral-like Sb2Se3/SnS2 photocathode co-optimized by bilayer Sb2Se3 structure and hole-storage layer for photoelectrochemical water splitting. J Alloy Compd 919:165825

    Article  CAS  Google Scholar 

  21. Zhao K, Yang J, Zhong M, Gao Q, Wang Y, Wang X, Shen W, Hu C, Wang K, Shen G, Li M, Wang J, Hu W, Wei Z (2020) Direct Polarimetric Image Sensor and Wide Spectral Response Based on Quasi‐1D Sb2Se3 Nanowire. Adv Funct Mater 31(6):2006601

    Article  Google Scholar 

  22. Duan Z, Liang X, Feng Y, Ma H, Liang B, Wang Y, Luo S, Wang S, Schropp REI, Mai Y, Li (2022) Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology. Adv Mater 34(30):2202969

    Article  CAS  Google Scholar 

  23. Guo H, Du X, Feng Z, Zhang J, Wang X, Jia X, Qiu J, Yuan N, Ding J (2021) Efficiency enhancement of Sb2Se3 solar cells based on electron beam evaporation CdS film with variable deposition temperature. Sol Energy 224:875–882

    Article  CAS  Google Scholar 

  24. Hu X, Tao J, Wang Y, Xue J, Weng G, Zhang C, Chen S, Zhu Z, Chu J (2019) 5.91%-efficient Sb2Se3 solar cells with a radio-frequency magnetron-sputtered CdS buffer layer. Appl Mater Today 16:367–374

    Article  Google Scholar 

  25. Wang X, Guo H, Ma C, Jia X, Li Y, Yuan N, Ding J (2019) Enhancement in the efficiency of Sb2Se3 solar cells using a TiO2-modified SnO2 buffer layer. vacuum 166:201–205

    Article  CAS  Google Scholar 

  26. Zhang L, Lian W, Zhao X, Yin Y, Chen T, Zhu C (2020) Sb2S3 Seed-Mediated Growth of Low-Defect Sb2S3 on a TiO2 Substrate for Efficient Solar Cells. ACS Appl Energy Mater 3(12):12417–12422

    Article  CAS  Google Scholar 

  27. Guo H, Chen Z, Wang X, Cang Q, Ma C, Jia X, Yuan N, Ding J (2019) Significant increase in efficiency and limited toxicity of a solar cell based on Sb2Se3 with SnO2 as a buffer layer. J Mater Chem C 45:14350–14356

    Article  Google Scholar 

  28. Wang L, Li DB, Li K, Chen C, Deng H, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J (2017) Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat Energy 2(4):1–9

    Article  Google Scholar 

  29. Lan C, Luo J, Lan H, Fan B, Peng H, Zhao J, Sun H, Zheng Z, Liang G, Fan P (2018) Enhanced Charge Extraction of Li-Doped TiO2 for Efficient Thermal-Evaporated Sb2S3 Thin Film Solar Cells. Materials 11(3):355

    Article  Google Scholar 

  30. Guo L, Vijayaraghavan SN, Duan X, Menon HG, Wall J, Kong L, Gupta S, Li L, Yan F (2021) Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer. Sol Energy 218:525–531

    Article  CAS  Google Scholar 

  31. Tang R, Wang X, Lian W, Huang J, Wei Q, Huang M, Yin Y, Jiang C, Yang S, Xing G, Chen S, Zhu C, Hao X, Green MA, Chen T (2020) Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat Energy 5(8):587–595

    Article  CAS  Google Scholar 

  32. Li Y, Wei Y, Feng K, Hao Y, Pei J, Sun B (2018) Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell. Mater Res Express 5(6):065903

    Article  Google Scholar 

  33. Zhao B, Wan Z, Luo J, Han F, Malik HA, Jia C, Liu X, Wang R (2018) Efficient Sb2Se3 sensitized solar cells prepared through a facile SILAR process and improved performance by interface modification. Appl Surf Sci 450:228–235

    Article  CAS  Google Scholar 

  34. Ying C, Guo F, Wu Z, Lv K, Shi C (2020) Influence of surface modifier molecular structures on the photovoltaic performance of Sb2S3 sensitized TiO2 nanorod array solar cells, Energy. Technology 8(6):1901368

    CAS  Google Scholar 

  35. Kim WH, Woo S, Kim KP, Kwon SM, Kim DH (2019) Efficient TiO2 Surface Treatment Using Cs2CO3 for Solution-Processed Planar-Type Sb2S3 Solar Cells. Nanoscale Res Lett 14:1–9

    Article  Google Scholar 

  36. Dong J, Wu J, Jia J, Fan L, Lin Y, Lin J, Huang M (2017) Efficient perovskite solar cells employing a simply-processed CdS electron transport layer. J Mater Chem C 5(38):10023–10028

    Article  CAS  Google Scholar 

  37. Sonker RK, Shastri R, Johari R (2021) Superficial Synthesis of CdS Quantum Dots for an Efficient Perovskite-Sensitized Solar Cell. Energy Fuels 35(9):8430–8435

    Article  CAS  Google Scholar 

  38. Liu X, Feng Z, Sun Y, Su M, Liu Y, Liu H, Wen J, Liu H (2021) Nanostructured CdS Buffer Layer Fabricated with a Simple Spin-Coating Method for Sb2S3 Solar Cells. Phys Status Solidi A 218(18):2100337

    Article  CAS  Google Scholar 

  39. Feng Z, Sun S, Sun Y, Liu X, Liu H, Liu H (2022) Efficient CdS buffered ­TiO2 electronic transport layer for Sb2S3 solar cells by a facile spinning coating process. Appl Phys A 128(6):479

    Article  CAS  Google Scholar 

  40. Feng Z, Sun S, Zhang S, Zou W, Hang N, Zhou L, Wei X, Sun Y, Wen J, Liu H (2023) Self-passivated CdS buffer layer for antimony sulfide solar cells. J Alloy Compd 966:171522

    Article  CAS  Google Scholar 

  41. Wang Y, Tang R, Huang L, Qian C, Lian W, Zhu C, Chen T (2022) Post-Treatment of TiO2 Film Enables High-Quality Sb2Se3 Film Deposition for Solar Cell Applications. ACS Appl Mater Interfaces 14(29):33181–33190

    Article  CAS  Google Scholar 

  42. James RW (1966) The Optical Principles of the Diffraction of X-rays Cornell University Press, 30(2):251

  43. Masood MT, Weinberger C, Sarfraz J, Rosqvist E, Sandén S, Sandberg OJ, Vivo P, Hashmi G, Lund DP, Österbacka R, Smått JH (2017) Impact of film thickness of ultra-thin dip-coated compact TiO2. ACS Appl Mater interfaces 9(21):17906–17913

    Article  CAS  Google Scholar 

  44. Wang W, Wang X, Chen G, Chen B, Cai H, Chen T, Chen S, Huang Z, Zhu C, Zhang Y (2018) Promising Sb2(S,Se)3 Solar Cells with High Open Voltage by Application of a TiO2/CdS Double Buffer Layer. Sol RRL 2(11):1800208

    Article  Google Scholar 

  45. Wang X, Li J, Liu W, Yang S, Zhu C, Chen T (2017) A fast chemical approach towards Sb2S3 film with a large grain size for high-performance planar heterojunction solar cells. Nanoscale 9(10):3386–3390

    Article  CAS  Google Scholar 

  46. Han J, Pu X, Zhou H, Cao Q, Wang S, He Z, Gao B (2020) Synergistic effect through the introduction of inorganic zinc halides at the interface of TiO2 and Sb2S3 for high-performance Sb2S3 planar thin-film solar cells. ACS Appl Mater Interfaces 12(39):44297–44306

    Article  CAS  Google Scholar 

  47. Xu X, Zhang H, Shi J, Dong J, Luo Y, Li D, Meng Q (2015) Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer. J Mater Chem A 3(38):19288–19293

    Article  CAS  Google Scholar 

  48. Bube RH (1962) Trap density determination by space-charge-limited currents. J Appl Phys 33(5):1733–1737

    Article  CAS  Google Scholar 

  49. Chen S, Ishaq M, Xiong W, Shah UA, Farooq U, Luo J, Zheng Z, Su Z, Fan P, Zhang X, Liang G (2021) Improved Open-Circuit Voltage of Sb2Se3 Thin-Film Solar Cells Via Interfacial Sulfur Diffusion-Induced Gradient Bandgap Engineering. Sol RRL 5(10):2100419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Project is supported by the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (Grant No. T2021010) and HBNU Internationalization Programs (Grant No. HBNUIP-20220103L).

Author contributions

SS wrote the main manuscript text. SZ prepared Figure 1. YH performed the XRD measurement. HT performed the EIS test. XL performed the XPS measurement. JW performed the SEM measurement. YS supplied the experimental scheme. HL prepared the other Figures and supervised the whole work and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxia Sun or Hongri Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Zhang, S., Han, Y. et al. Improved performances in Sb2Se3 solar cells based on CdS buffered TiO2 electron transport layer. J Sol-Gel Sci Technol 109, 182–191 (2024). https://doi.org/10.1007/s10971-023-06252-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06252-1

Keywords

Navigation