Skip to main content
Log in

Magnetodielectric coupling in Co/Mn compensated Ca3Co1+xMn1-xO6 compounds

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of Co/Mn compensated Ca3Co1+xMn1-xO6 compounds were synthesized. The structure and magnetization were characterized, as well as the dielectric properties were studied. In Co/Mn compensated samples, the well-ranked Co/Mn ionic order is destroyed which manifests the suppression of the formation of the short-range magnetic order. As a result, the freezing anomaly around Tf = 150 K diminishes. For the two Co/Mn compensated samples, the critical field HSF that causes magnetic structure change from ↑↑↓↓ state to ↑↑↓↑ state also increases. The appearance of dielectric peak at the antiferromagnetic phase transition temperature clearly indicates the coupling effect between the spin dipole and electric dipole. The temperature corresponding to the dielectric peak increases with the increasing measurement frequency. The frequency dependence of ferroelectric peak identifies relaxor ferroelectric nature. In dielectric measurements associated with magnetic fields, Δε` and Δtanδ have the same sign elucidating intrinsic magnetodielectric effect of Ca3Co1+xMn1-xO6. For the Co/Mn compensated x = ±0.05 two samples, the suppressed magnetic short-range order also leads to a low diffusion exponent γ and the weak relaxor ferroelectric nature. The thermal activation process of the dipole response is characterized by the Vogel–Fulcher equation and the results confirm that the freezing process of Ca3Co1+xMn1-xO6 is mainly dominated by coupling of polar nanodomains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chhillar S, Mukherjee K, Yadav CS (2022) Large magnetodielectric coupling in the vicinity of metamagnetic transition in 6H-perovskite Ba3GdRu2O9. J Phys Condens Matter 34:145801

    Article  CAS  Google Scholar 

  2. Basu T, Sakly N, Pautrat A, Veillon F, Pérez O, Caignaert V, Raveau B, Hardy V (2021) Magnetodielectric coupling and multi-blocking effect in the Ising-chain magnet Sr2Ca2CoMn2O9. J Appl Phys 130:034102

    Article  CAS  Google Scholar 

  3. Gong G, Su D, Sun Y, Xu L, He J, Tian Z (2022) High-field magnetization and magnetodielectric effect in a Ni2NbBO6 single crystal. Phys Rev B 105:054408

    Article  CAS  Google Scholar 

  4. Kaushik SD, Rayaprol S, Saha J, Mohapatra N, Siruguri V, Babu PD, Patnaik S, Sampathkumaran EV (2010) Magnetoelectric coupling in Ca3CoMnO6. J Appl Phys 108:084106

    Article  Google Scholar 

  5. Liu XL, Li D, Zhao HX, Dong XW, Long LS, Zheng LS (2021) Inorganic-organic hybrid molecular materials: From multiferroic to magnetoelectric. Adv Mater 33:2004542

    Article  CAS  Google Scholar 

  6. Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20

    Article  CAS  Google Scholar 

  7. Lu CL, Wu M, Lin L, Liu JM (2019) Single-phase multiferroics: new materials, phenomena, and physics. Natl Sci Rev 6:653–668

    Article  CAS  Google Scholar 

  8. Shiratsuchi Y, Toyoki K, Nakatani R (2021) Magnetoelectric control of antiferromagnetic domain state in Cr2O3 thin film. J Phys Condens Matter 33:243001

    Article  CAS  Google Scholar 

  9. Agarwal H, Yadav P, Lalla NP, Alonso JA, Srivastava ON, Shaz MA (2019) Structural correlation of magneto-electric coupling in polycrystalline TbMnO3 at low temperature. J Alloy Compd 806:510–519

    Article  CAS  Google Scholar 

  10. Zhang Q, Singh K, Simon C, Tung LD, Balakrishnan G, Hardy V (2014) Impact of the various spin and orbital-ordering processes on the multiferroic properties of orthovanadate DyVO3. Phys Rev B 90:024418

    Article  CAS  Google Scholar 

  11. Tian Y, Wang W, Chai Y, Cong J, Shen S, Yan L, Wang S, Han X, Sun Y (2014) Quantum tunneling of magnetization in a metal-organic framework. Phys Rev Lett 112:017202

    Article  Google Scholar 

  12. Morris DJP, Tennant D, Grigera S, Klemke B, Castelnovo C, Moessner R, Czternasty C, Meissner M, Rule K, Hoffmann J-U (2009) Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7. Science 326:411–414

    Article  CAS  Google Scholar 

  13. Zhai K, Wu Y, Shen S, Tian W, Cao H, Chai Y, Chakoumakos BC, Shang D, Yan L, Wang F, Sun Y (2017) Giant magnetoelectric effects achieved by tuning spin cone symmetry in Y-type hexaferrites. Nat Commun 8:519

    Article  Google Scholar 

  14. Murakawa H, Onose Y, Miyahara S, Furukawa N, Tokura Y (2010) Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7. Phys Rev Lett 105:137202

    Article  CAS  Google Scholar 

  15. Arima T, Tokunaga A, Goto T, Kimura H, Noda Y, Tokura Y (2006) Collinear to spiral spin transformation without changing the modulation wavelength upon ferroelectric transition in Tb1-xDyxMnO3. Phys Rev Lett 96:097202

    Article  CAS  Google Scholar 

  16. Dong S, Liu JM, Cheong SW, Ren ZF (2015) Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv Phys 64:519–626

    Article  CAS  Google Scholar 

  17. Pandya RJ, Zinzuvadiya S, Sengunthar P, Patel SS, Thankachen N, Joshi US (2021) Microstructural, dielectric, magneto-electric and optical properties of single phase Ca3CoMnO6. J Phys Condens Matter 601:412656

    CAS  Google Scholar 

  18. Shi J, Song J, Wu J, Rao X, Che H, Zhao Z, Zhou H (2017) Ferroelectricity of structural origin in the spin-chain compounds Ca3Co2−xMnxO6. J Phys Rev B 96:064112

    Article  Google Scholar 

  19. Choi Y, Yi H, Lee S, Huang Q, Kiryukhin V, Cheong SW (2008) Ferroelectricity in an Ising chain magnet. Phys Rev Lett 100:047601

    Article  CAS  Google Scholar 

  20. Ruan M, Ouyang Z, Sheng S, Shi X, Guo Y, Cheng J, Xia Z (2013) High-field magnetization and ESR studies of spin-chain compound Ca3CoMnO6. J Magn Magn Mater 344:55–59

    Article  CAS  Google Scholar 

  21. Sheng S, Ouyang Z, Chen J, Ruan M, Shi X, Xia Z (2013) Magnetic anisotropy and spin-glass behavior in spin-chain compound Ca3Co1.62Mn0.38O6. J Alloy Compd 556:287–291

    Article  CAS  Google Scholar 

  22. Zhou J, Gong G, Duan Y, Wang L, Zuo Y, Wang Y, Su Y (2023) Influence of Cr-ion substitution on the magnetization and dielectric properties of the frustrated Ca3CoMnO6 compound. J Solid State Chem 323:124021

    Article  CAS  Google Scholar 

  23. Gong G, Hu H, Shi C, Wang Y, Gao Y, Su Y, Guo J, Ma Y, Su Y (2020) Effect of Ti4+ substitution on microstructure and magnetic order of Ca3CoMn1-xTixO6. J Supercond Nov Magn 33:3205–3209

    Article  CAS  Google Scholar 

  24. Rayaprol S, Sengupta K, Sampathkumaran E (2003) Magnetic behavior of quasi-one-dimensional oxides Ca3Co1+xMn1-xO6. Solid State Commun 128:79–94

    Article  CAS  Google Scholar 

  25. Ouyang Z, Sheng S, Chen J, Shi X, Ruan M, Xia Z, Li L (2012) Spin-glass-like freezing in spin-chain compounds Ca3Co2−xMnxO6: Effect of disorder. J Appl Phys 112:103923

    Article  Google Scholar 

  26. Ding P, Li L, Guo J, He Q, Gao X, Liu J (2010) Influence of Co: Mn ratio on multiferroicity of Ca3Co2-xMnxO6 around x similar to 1. Appl Phys Lett 97:032901

    Article  Google Scholar 

  27. Gong G, Guo J, Ma Y, Zhang Y, Wang Y, Su Y (2019) Spin glass and exchange bias effect in one-dimensional frustrated compound Ca3CoMnO6. J Magn Magn Mater 482:323–328

    Article  CAS  Google Scholar 

  28. Wu Y, Yu C, Chen X, Li J (2012) Magnetic and magnetodielectric properties of Bi-substituted yttrium iron garnet ceramics. J Magn Magn Mater 324:3334–3337

    Article  CAS  Google Scholar 

  29. Gong G, Zerihun G, Fang Y, Huang S, Yin C, Yuan S (2015) Relaxor behavior and large room-temperature polarization of ferroelectric Sr4CaBiTi3Nb7O30 ceramics. J Am Ceram Soc 98:109–113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the research project of the Department of Science and Technology of Henan Province (Grant nos. 212102210477, 222102230086, 212102210132, 212102210482).

Author contributions

GG participated in the investigation and edited the manuscript. YD conducted the experiments. JZ, YZ and LW completed dielectric analysis. YS and YW finished magnetization analysis. DL performed structural analysis. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoshang Gong.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, G., Duan, Y., Zhou, J. et al. Magnetodielectric coupling in Co/Mn compensated Ca3Co1+xMn1-xO6 compounds. J Sol-Gel Sci Technol 108, 791–797 (2023). https://doi.org/10.1007/s10971-023-06235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06235-2

Keywords

Navigation