Skip to main content

Advertisement

Log in

Enhanced photocatalytic degradation of organic dyes using Ce–doped TiO2 thin films

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We fabricated and investigated the Ce–doped TiO2 (Ce–TiO2, 1.0 wt%) photocatalysts thin film using sol–gel and spin coating methods, which can be used to effectively treat toxic organic substances from aqueous environments. The thin films were characterized by X–ray diffraction, scanning electron microscopy, energy–dispersive X–ray spectroscopy, Raman spectroscopy, photoluminescent spectroscopy, and ultraviolet–visible spectrophotometer. In terms of quantitative analysis, the Ce–TiO2 thin film exhibited a lower band gap of 3.21 eV compared to the undoped TiO2 film with a band gap of 3.38 eV. These results suggest an improved photocatalytic efficiency, which was further confirmed by experimental findings related to wastewater treatment. The photocatalytic behavior under UV irradiation was studied for the degradation of methylene blue, rhodamine B, methyl violet, and tetracycline (TC). In comparison to the pure TiO2 thin film, the Ce–TiO2 thin film photocatalyst showed a significantly larger photocatalytic activity. The largest removal efficiency of Ce–TiO2 photocatalytic thin film was observed on the degradation of TC with an efficiency of 86.42% after 120 min of exposure, suggesting potential applications in treating water pollution caused by hazardous chemicals or other pollutants.

Graphical Abstract

Highlight

  • Sol–gel and spin coating techniques were employed to produce Ce–TiO2 and TiO2 thin films.

  • Research delved into the degradation of organic dyes through Ce–doped TiO2 and TiO2 thin films.

  • Enhanced photocatalytic efficiency of Ce–TiO2 over pure TiO2 was observed under UV irradiation.

  • Ce–TiO2 exhibited remarkable 86.42% tetracycline reduction within 120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao M, Wu Z, Guo X, Yan D (2022) Emergy evaluation of positive and negative benefits of agricultural water use based on energy analysis of water cycle. Ecol Indic 139:108914. https://doi.org/10.1016/j.ecolind.2022.108914

    Article  CAS  Google Scholar 

  2. Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena PL, Tandon S, Samantaray R (2022) Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. Appl Surf Sci Adv 10:100270. https://doi.org/10.1016/j.apsadv.2022.100270

    Article  Google Scholar 

  3. Huang L, Huang X, Yan J, Liu Y, Jiang H, Zhang H, Tang J, Liu Q (2022) Research progresses on the application of perovskite in adsorption and photocatalytic removal of water pollutants. J Hazard Mater 442:2023. https://doi.org/10.1016/j.jhazmat.2022.130024

    Article  CAS  Google Scholar 

  4. Ikram M, Rashid M, Haider A, Naz S, Haider J, Raza A, Ansar MT, Uddin MK, Ali NM, Ahmed SS, Imran M, Dilpazir S, Khan Q, Maqbool M (2021) A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain Mater Technol 30:e00343. https://doi.org/10.1016/j.susmat.2021.e00343

    Article  CAS  Google Scholar 

  5. Ghodsi FE, Tepehan FZ, Tepehan GG (2011) Derivation of the optical constants of spin coated CeO2–TiO2–ZrO2 thin films prepared by solgel route. J Phys Chem Solids 72:761–767. https://doi.org/10.1016/j.jpcs.2011.03.009

    Article  CAS  Google Scholar 

  6. Nwachukwu IM, Nwanya AC, Osuji R, Ezema FI (2018) Nanostructured Mn–doped CeO2 thin films with enhanced electrochemical properties for pseudocapacitive applications. J Alloy Compd 886:161206. https://doi.org/10.1016/j.jallcom.2021.161206

    Article  CAS  Google Scholar 

  7. Luévano–Hipólito E, Torres–Martínez LM, Triana C, Lee SW (2019) Ink–jet Bi2O3 films and powders for CO2 capture and self–cleaning applications. Thin Solid Films 677:83–89. https://doi.org/10.1016/j.tsf.2019.03.020

    Article  CAS  Google Scholar 

  8. Bakhtiarnia S, Sheibani S, Nadi A, Aubry E, Sun H, Briois P, Yazdif MAP (2022) Preparation of sputter–deposited Cu–doped BiVO4 nanoporous thin films comprised of amorphous/crystalline heterostructure as enhanced visible–light photocatalyst. Appl Surf Sci 608:2023. https://doi.org/10.1016/j.apsusc.2022.155248

    Article  CAS  Google Scholar 

  9. Bakhtiarnia S, Sheibani S, Billard A, Aubry E, Arab M (2022) Deposition of nanoporous BiVO4 thin–film photocatalyst by reactive magnetron sputtering. Eff total Press Substr Trans Nonferrous Met Soc China (Engl Ed) 32:957–971. https://doi.org/10.1016/S1003-6326(22)65846-1

    Article  CAS  Google Scholar 

  10. Kumar V, Chen WF, Zhang X, Jiang Y, Koshy P, Sorrell CC (2019) Properties and performance of photocatalytic CeO2, TiO2, and CeO2–TiO2 layered thin films. Ceram Int 45:22085–22094. https://doi.org/10.1016/j.ceramint.2019.07.225

    Article  CAS  Google Scholar 

  11. Gnanasekaran L, Rajendran S, Priya AK, Durgalakshmi D, Dai–Viet N, Vo L, Cornejo–Ponce F, Gracia, Soto–Moscoso M (2021) Photocatalytic degradation of 2,4–dichlorophenol using bio–green assisted CeO2–TiO2 nanocomposite system. Environ Res 195:110852. https://doi.org/10.1016/j.envres.2021.110852

    Article  CAS  Google Scholar 

  12. Dao TT, Vo TLN, Duong AT, Tran DT, Nguyen DL, Pham VV, Das R, Nguyen HT (2023) Highly photocatalytic activity of pH–controlled ZnO nanoflakes. Opt Mater 140:113865. https://doi.org/10.1016/j.optmat.2023.113865

    Article  CAS  Google Scholar 

  13. Sharma D, Mehta BR (2018) Nanostructured TiO2 thin films sensitized by CeO2 as an inexpensive photoanode for enhanced photoactivity of water oxidation. J Alloy Compd 749:329–335. https://doi.org/10.1016/j.jallcom.2018.03.228

    Article  CAS  Google Scholar 

  14. Shayegan Z, Lee CS, Haghighat F (2018) TiO2 photocatalyst for removal of volatile organic compounds in gas phase – A review. Chem Eng J 334:2408–2439. https://doi.org/10.1016/j.cej.2017.09.153

    Article  CAS  Google Scholar 

  15. Kidchob T, Malfatti L, Marongiu D, Enzo S, Innocenzi P (2010) An alternative sol–gel route for the preparation of thin films in CeO2–TiO2 binary system. Thin Solid Films 518:1653–1657. https://doi.org/10.1016/j.tsf.2009.11.078

    Article  CAS  Google Scholar 

  16. Lu X, Li X, Chen F, Chen Z, Qian J, Zhang Q (2020) Biotemplating synthesis of N–doped two–dimensional CeO2–TiO2 nanosheets with enhanced visible light photocatalytic desulfurization performance. J Alloy Compd 815:152326. https://doi.org/10.1016/j.jallcom.2019.152326

    Article  CAS  Google Scholar 

  17. Pudukudy M, Jia Q, Yuan J, Megala S, Rajendran R, Shan S (2019) Influence of CeO2 loading on the structural, textural, optical and photocatalytic properties of single–pot sol–gel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation. Mater Sci Semicond Process 108:104891. https://doi.org/10.1016/j.mssp.2019.104891

    Article  CAS  Google Scholar 

  18. Ghasemi S, Setayesh SR, Habibi–Yangjeh A, Hormozi–Nezhad MR, Gholami MR (2012) Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J Hazard Mater 199–200:170–178. https://doi.org/10.1016/j.jhazmat.2011.10.080

    Article  CAS  Google Scholar 

  19. Chen YC, Chang YC, Gloter A, Hsu PK, Song JM, Chen SY (2021) Synergetic effect of interface and surface on photocatalytic performance of TiO2@ hollow CeO2 core–shell nanostructures. Appl Surf Sci 566:150602. https://doi.org/10.1016/j.apsusc.2021.150602

    Article  CAS  Google Scholar 

  20. Páez CA, Poelman D, Pirard JP, Heinrichs B (2010) Unpredictable photocatalytic ability of H2–reduced rutile–TiO2 xerogel in the degradation of dye–pollutants under UV and visible light irradiation. Appl Catal B Environ 94:263–271. https://doi.org/10.1016/j.apcatb.2009.11.017

    Article  CAS  Google Scholar 

  21. Thiruppathi M, Senthil Kumar P, Devendran P, Ramalingan C, Swaminathan M, Nagarajan ER (2018) Ce@TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J Alloy Compd 735:728–734. https://doi.org/10.1016/j.jallcom.2017.11.139

    Article  CAS  Google Scholar 

  22. Palmisano L, Augugliaro V, Bellardita M, Paola AD, López EG, Loddo V, Marcì G, Palmisano G, Yurdakal S (2011) Titania photocatalysts for selective oxidations in water. ChemSusChem 4:1431–1438. https://doi.org/10.1002/cssc.201100196

    Article  CAS  Google Scholar 

  23. Luo X, Duan Z, Zhu Y, Ni J, Li Y, Zhang J, Chen Y, Wang X, Zhao G (2022) Enhanced visible–light catalytic activity of micro–patterned ZnFe2O4/Fe3+–TiO2 heterojunction composite thin films prepared by photolithography–assisted chemical solution deposition. Mater Res Bull 155:1–12. https://doi.org/10.1016/j.materresbull.2022.111951

    Article  CAS  Google Scholar 

  24. Li JC, Cui HP, Hou XY (2018) Effect of p–n interface on resistive switching of NiO/CeO2 thin films. J Alloy Compd 752:247–252. https://doi.org/10.1016/j.jallcom.2018.04.186

    Article  CAS  Google Scholar 

  25. Hussain I, Tanimu G, Ahmed S, Aniz CU, Alasiri H, Alhooshani K (2022) A review of the indispensable role of oxygen vacancies for enhanced CO2 methanation activity over CeO2–based catalysts: Uncovering, influencing, and tuning strategies. Int J Hydrog Energy 48:24663–24696. https://doi.org/10.1016/j.ijhydene.2022.08.086

    Article  CAS  Google Scholar 

  26. El–Habib A, Addou M, Aouni A, Diani M, Nouneh K, Zimou J, Marjaoui A, Barbouch Z, Zanouni M, El Jouad Z (2022) Effect of indium doping on the structural, optical and electrochemical behaviors of CeO2 nanocrystalline thin films. Opt Mater (Amst) 127:112312. https://doi.org/10.1016/j.optmat.2022.112312

    Article  CAS  Google Scholar 

  27. Hasan I, Alharthi FA (2022) Caffeine–alginate immobilized CeTiO4 bionanocomposite for efficient photocatalytic degradation of methylene blue. J Photochem Photobio A Chem 433:114126. https://doi.org/10.1016/j.jphotochem.2022.114126

    Article  CAS  Google Scholar 

  28. Tuyen LTT, Dao AQ, Toan TTT, Tung TQ, Hoa TT, Mau TX, Khieu DQ (2018) Synthesis of CeO2/TiO2 nanotubes and heterogeneous photocatalytic degradation of methylene blue. J Environ Chem Eng 6:5999–6011. https://doi.org/10.1016/j.jece.2018.09.022

    Article  CAS  Google Scholar 

  29. Lu X, Li X, Qian J, Miao N, Yao C, Chen Z (2016) Synthesis and characterization of CeO2/TiO2 nanotube arrays and enhanced photocatalytic oxidative desulfurization performance. J Alloy Compd 661:363–371. https://doi.org/10.1016/j.jallcom.2015.11.148

    Article  CAS  Google Scholar 

  30. Chen SW, Lee JM, Lu KT, Pao CW, Lee JF, Chan TS, Chen JM (2010) Band–gap narrowing of TiO2 doped with Ce probed with x–ray absorption spectroscopy. Appl Phys Lett 97:3–5. https://doi.org/10.1063/1.3460916

    Article  CAS  Google Scholar 

  31. Martin MV, Alfano OM, Satuf ML (2019) Cerium–doped TiO2 thin films: Assessment of radiation absorption properties and photocatalytic reaction efficiencies in a microreactor. J Environ Chem Eng 7:103478. https://doi.org/10.1016/j.jece.2019.103478

    Article  CAS  Google Scholar 

  32. Thiruppathi M, Senthil Kumar P, Devendran P, Ramalingan C, Swaminathan M, Nagarajan ER (2018) Ce@TiO2 nanocomposites: An efficient, stable and affordable photocatalyst for the photodegradation of diclofenac sodium. J Alloy Compd 735:728–734. https://doi.org/10.1016/j.jallcom.2017.11.139

    Article  CAS  Google Scholar 

  33. Mahadik MA, Shinde SS, Mohite VS, Kumbhar SS, Moholkar AV, Rajpure KY, Ganesan V, Nayak J, Barman SR, Bhosale CH (2014) Visible light catalysis of rhodamine B using nanostructured Fe2O3, TiO2 and TiO2/Fe2O3 thin films. J Photochem Photobio B Biol 133:90–98. https://doi.org/10.1016/j.jphotobiol.2014.01.017

    Article  CAS  Google Scholar 

  34. Aguinaco A, Amaya B, Ramírez–del–Solar M (2022) Facile fabrication of Fe–TiO2 thin film and its photocatalytic activity. Environ Sci Pollut Res 29:23292–23302. https://doi.org/10.1007/s11356-021-17425-2

    Article  CAS  Google Scholar 

  35. Nie X, Li G, Li S, Luo Y, Luo W, Wan Q, An T (2022) Highly efficient adsorpotion and catalytic degradation of ciprofloxacin by a novel heterogenous Fenton catalyst of hexapod–like pyrite nanosheets mineral clusters. Appl Catal B: Environ 200:120734. https://doi.org/10.1016/j.apcatb.2021.120734

    Article  CAS  Google Scholar 

  36. Makdee A, Unwiset P, Chanapattharapol KC, Kidkhunthod P (2018) Effects of Ce addition on the properties and photocatalytic activity of TiO2, investigated by X–ray absorption spectroscopy. Mater Chem Phys 213:431–443. https://doi.org/10.1016/j.matchemphys.2018.04.016

    Article  CAS  Google Scholar 

  37. H Khan, MG Alalm, M Lalonde–Lavoie, MF Ordonez, M Sartirana, AGG Cerrato, CL Bianchi, and DC Boffito (2021) Photocatalytic degradation of NOx and ethanol in the gas phase by spray dried Ce–TiO2. J Environ Chem Eng 9106813. https://doi.org/10.1016/j.jece.2021.106813

  38. Komaraiah D, Radha E, Sivakumar J, Ramana Reddy MV, Sayanna R (2021) Influence of Fe3+ ion doping on the luminescence emission behavior and photocatalytic activity of Fe3+, Fe3+ –codoped TiO2 thin films. J Alloy Compd 868:159109. https://doi.org/10.1016/j.jallcom.2021.159109

    Article  CAS  Google Scholar 

  39. Radha E, Komaraiah D, Sayanna R, Sivakumar J (2022) Photoluminescence and photocatalytic activity of rare earth ions doped anatase TiO2 thin films. J Lumin 244:118727. https://doi.org/10.1016/j.jlumin.2022.118727

    Article  CAS  Google Scholar 

  40. Rodrigues MA, Catto AC, Longo E, Nossol E, Lima RC (2018) Characterization and electrochemical performance of CeO2 and Eu–doped CeO2 films as a manganese redox flow battery component. J Rare Earths 36:1074–1083. https://doi.org/10.1016/j.jre.2018.05.004

    Article  CAS  Google Scholar 

  41. Song Z, Gao H, Liao G, Zhang W, Wang D (2022) A novel slag–based Ce/TiO2@LDH catalyst for visible light driven degradation of tetracycline: performance and mechanism. J Alloy Compd 901:163525. https://doi.org/10.1016/j.jallcom.2021.163525

    Article  CAS  Google Scholar 

  42. Dong W, Pan F, Xu L, Zheng M, Sow CH, Wu K, Xu GQ, Chen W (2015) Facile synthesis of CdS@TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci 349:279–286. https://doi.org/10.1016/j.apsusc.2015.04.207

    Article  CAS  Google Scholar 

  43. Cheng X, Liu H, Chen Q, Li J, Wang P (2013) Contruction of N, S codoped TiO2 nano–tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim Acta 103:134–142. https://doi.org/10.1016/j.electacta.2013.04.072

    Article  CAS  Google Scholar 

  44. Sangareswari M, Sundaram MM (2017) Development of efficiency improved polymer–modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment. Appl Water Sci 7:1781–1790. https://doi.org/10.1007/s13201-015-0351-6

    Article  CAS  Google Scholar 

  45. Durgam K, Eppa R, Ramana RMV, Siva KJ, Sayanna R (2019) structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol–gel spin coating. Surf Inter 7:100368. https://doi.org/10.1016/j.surfin.2019.100368

    Article  CAS  Google Scholar 

  46. Tong T, Zhang J, Tian B, Chen F, He D, Anpo M (2007) Preparation of Ce–TiO2 catalysts by controlled hydrolysis of titanium alkoxide based on esterification reaction and study on its photocatalytic activity. J Colloid Interface Sci 315:382–388. https://doi.org/10.1016/j.jcis.2007.06.051

    Article  CAS  Google Scholar 

  47. Wang B, de Godoi FC, Zheng S, Gentle IR, Li C (2016) Enhanced photocatalytic properties of reusable TiO2–loaded natural porous minerals in dye wastewater purification. Powder Technol 302:426–433. https://doi.org/10.1016/j.powtec.2016.09.003

    Article  CAS  Google Scholar 

  48. Ma TY, Cao JL, Shao GS, Zhang XJ, Yuan ZY (2009) Hierarchically structured squama–like cerium–doped titania: Synthesis, photoactivity, and catalytic CO oxidation. J Phys Chem C 113:16658–16667. https://doi.org/10.1021/jp906187g

    Article  CAS  Google Scholar 

  49. Keerthana SP, Yuvakkumar R, Ravi G, Hong SI, Al–Sehemi AG, Velauthapillai D (2022) Fabrication of Ce doped TiO2 for efficient organic pollutants removal from wastewater. Chemosphere 293:133540. https://doi.org/10.1016/j.chemosphere.2022.133540

    Article  CAS  Google Scholar 

  50. Shi Z, Zhou M, Zheng D, Liu H, Yao S (2013) Preparation of Ce–doped TiO2 hollow fibers and their photocatalytic degradation properties for dye compound. J Chin Chem Soc 60:1156–1162. https://doi.org/10.1002/jccs.201200212

    Article  CAS  Google Scholar 

  51. Sun P, Liu L, Cui SC, Liu JG (2014) Synthesis, characterization of Ce–doped TiO2 nanotubes with high visible light photocatalytic activity. Catal Lett 144:2107–2113. https://doi.org/10.1007/s10562-014-1377-3

    Article  CAS  Google Scholar 

  52. Liu J, Li H, Li Q, Wang X, Zhang M, Yang J (2014) Preparation of cerium modified titanium dioxide nanoparticles and investigation of their visible light photocatalytic performance. Int J Photoenergy 2014:695679. https://doi.org/10.1155/2014/695679

    Article  CAS  Google Scholar 

  53. Chung L, Chen W, Koshy P, Sorrell CC (2017) Effect of Ce–doping on the photocatalytic performance of TiO2 thin films. Mater Chem Phys 197:236–239. https://doi.org/10.1016/j.matchemphys.2017.05.037

    Article  CAS  Google Scholar 

  54. Lalliansanga DT, Lee SM, Kim DJ (2022) Photocatalytic degradation of amoxicillin and tetracycline by template synthesized nano–structured Ce3+@TiO2 thin film catalyst. Environ Res 210:112914. https://doi.org/10.1016/j.envres.2022.112914

    Article  CAS  Google Scholar 

  55. Pudukudy M, Jia Q, Yuan J, Megala S, Rajendran R, Shan S (2020) Influence of CeO2 loading on the structural, textural, optical and photocatalytic properties of single–pot sol–gel derived ultrafine CeO2/TiO2 nanocomposites for the efficient degradation of tetracycline under visible light irradiation. Mater Sci Semicond Process 108:104891. https://doi.org/10.1016/j.mssp.2019.104891

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Vietnam Academy of Science and Technology (VAST) under grant number TĐANQP.02/23–25.

Author contributions

TLNV: conceived ideas, completed experiments, and wrote the article. TTD, HVB, and DCN: assisted in completing experiments. ATD, VHN, and DLN: revised the article for language issues. THN: funded experiments. HTN: discussed the results and revised manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu Tuan Nguyen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, T.L.N., Dao, T.T., Duong, A.T. et al. Enhanced photocatalytic degradation of organic dyes using Ce–doped TiO2 thin films. J Sol-Gel Sci Technol 108, 423–434 (2023). https://doi.org/10.1007/s10971-023-06203-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06203-w

Keywords

Navigation