Skip to main content
Log in

Ammonia and nitrogen dioxide detection using ZnO/CNT nanocomposite synthesized by sol–gel technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Through the use of sol–gel method, a composite material was created based on zinc oxide (ZnO) and multi-walled carbon nanotubes (CNT). As evidenced by the color of the solution and SEM images, colloidal nanoparticles were produced. For the construction of the devices, thin layers were deposited utilizing the spray pyrolysis on glass substrates and interdigitated electrodes. Samples were heated at different annealing temperatures ranging from 200 to 400 °C. The samples heated at 400 °C, have shown better interaction between zinc oxide and carbon nanotubes and achieved the sensitivity goal. Utilizing Tauc calculations and UV–visible absorption spectroscopy in the range of 300–1000 nm wavelength, the optical energy gap has been studied to address the effect of the existence of carbon nanotubes in the prepared samples. Using a homemade sensor system, the interaction of gases, including ammonia, nitrogen dioxide, and other organic odorants with the samples was investigated. Samples containing carbon nanotubes have exhibited better sensitivity and reversibility toward vapors, while zinc oxide only does not show reasonable performance at room temperature. The sensitivity toward nitrogen dioxide was found to be 96.6% for samples containing carbon nanotubes, while the sensitivity was 10.09% for samples of zinc oxide only.

Graphical Abstract

Highlights

  • Composite of zinc oxide and carbon nanotubes was synthesized by sol-gel technique.

  • Thin films have been deposited using spray pyrolysis method.

  • Optical, SEM and FTIR confirmed the successful interaction between zinc oxide and carbon nanotubes.

  • The composite materials show better sensitivity and response time towards odorants than bare zinc oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang ZL (2004) J Phys Condens Matter 16:R829

    Article  CAS  Google Scholar 

  2. Leonardi SG (2017) Chemosensors 5:17

    Article  Google Scholar 

  3. Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Sensors 10:2088

    Article  CAS  Google Scholar 

  4. Xu L, Li X, Chen Y, Xu F (2011) Appl Surf Sci 257:4031

    Article  CAS  Google Scholar 

  5. Kadem B, Banimuslem HA, Hassan A (2017) Karbala Int J Mod Sci 3:103

    Article  Google Scholar 

  6. Deng G, Zhang Y, Yu Y, Han X, Wang Y, Shi Z, Dong X, Zhang B, Du G, Liu Y (2020) ACS Appl Mater Interfaces 12:6788

    Article  CAS  Google Scholar 

  7. Wang ZL (2004) Mater Today 7:26

    Article  CAS  Google Scholar 

  8. Martins R, Fortunato E, Nunes P, Ferreira I, Marques A, Bender M, Katsarakis N, Cimalla V, Kiriakidis G (2004) J Appl Phys 96:1398

    Article  CAS  Google Scholar 

  9. Roy S, Basu S (2002) Bull Mater Sci 25:513

    Article  CAS  Google Scholar 

  10. Lieber CM (1998) Solid State Commun 107:607

    Article  CAS  Google Scholar 

  11. Alamro FS, Toghan A, Ahmed HA, Mostafa AM, Alakhras AI, Mwafy EA (2022) Microsc Res Tech 85:1611

    Article  CAS  Google Scholar 

  12. Ondo-Ndong R, Essone-Obame H, Moussambi ZH, Koumba N (2018) J Theor Appl Phys 12:309

    Article  Google Scholar 

  13. Saravade VG, Manzoor Z, Corda AM, Zhou C, Ferguson IT, Lu L (2020) In: Proc. SPIE 11288, quantum sensing and nano electronics and photonics, p 112881X–1

  14. Natsume Y, Sakata H (2000) Thin Solid Films 372:30

    Article  CAS  Google Scholar 

  15. Li H, Wang J, Liu H, Zhang H, Li X (2005) J Cryst Growth 275:e943

    Article  CAS  Google Scholar 

  16. Ismail AM, Menazea AA, Kabary HA, El-Sherbiny AE, Samy A (2019) J Mol Struct 1196:332

    Article  CAS  Google Scholar 

  17. Komatsubara K, Suzuki H, Inoue H, Kishibuchi M, Takahashi S, Marui T, Umezawa S, Nakagawa T, Nasu K, Maetani M, Tanaka Y (2022) ACS Appl Nano Mater 5:1

    Article  Google Scholar 

  18. Shooshtari M, Salehi A (2022) Sens Actuators B Chem 357:131418

  19. Snow ES, Perkins FK, Robinsona JA (2006) Chem Soc Rev 35:790

    Article  CAS  Google Scholar 

  20. Banimuslem H, Hassan A, Basova T, Durmus M, Tuncel S, Esenpinar AA, Gürek AG, Ahsen V (2015) J Nanosci Nanotechnol 15:2157

    Article  CAS  Google Scholar 

  21. Banimuslem H, Hassan A, Basova T, Esenpinar AA, Tuncel S, Durmuş M, Gürek AG, Ahsen V (2015) Sens Actuators B Chem 207:224

    Article  CAS  Google Scholar 

  22. Avouris P, Freitag M, Perebeinos V (2008) Nat Photonics 2:341

    Article  CAS  Google Scholar 

  23. Krueger A (2010) Carbon materials and nanotechnology. Wiley Online Publisher, USA

  24. Mohamed MM, Ghanem MA, Khairy M, Naguib E, Alotaibi NH (2019) Appl Surf Sci 487:539

    Article  CAS  Google Scholar 

  25. Kumar S, Ahlawat W, Kumar R, Dilbaghi N (2015) Biosens Bioelectron 70:498

    Article  CAS  Google Scholar 

  26. Phin HY, Ong YT, Sin JC (2020) J Environ Chem Eng 8:103222

    Article  CAS  Google Scholar 

  27. Hammad TM, Salem JK, Harrison RG (2010) Superlattices Microstruct 47:335

    Article  CAS  Google Scholar 

  28. Coulter JB, Birnie DP (2018) Phys Status Solidi Basic Res 255:1700393

    Article  Google Scholar 

  29. Das Mulmi D, Dhakal A, Shah BR (2015) Nepal J Sci Technol 15:111

    Article  Google Scholar 

  30. Chen L, Yi-Ching H, Wei-Sheng G, Chao-Ming H, Ting-Chung P (2009) Electrochim Acta 54:15

    Google Scholar 

  31. Mokhtar M, Ghanem M, Khairy M, Naguib E, Alotaibi N (2019) Appl Surf Sci 487:1–1420

  32. Thareja RK, Shukla S (2007) Appl Surf Sci 253:8889

    Article  CAS  Google Scholar 

  33. Kulkarni SS, Sawarkar Mahavidyalaya S, Shirsat MD (2015) Int J Adv Res Phys Sci 2:14

    Google Scholar 

  34. Jurablu S, Farahmandjou M, Firoozabadi TP (2015) J Sci Islam Repub Iran 26:281

    Google Scholar 

  35. Balogun SW, James OO, Sanusi YK, Olayinka OH (2020) SN Appl Sci 2:1

    Article  Google Scholar 

  36. Tetrycz H, Byrczek M, Rac O (2010) In: Proc. 2010 international students and young scientists workshop photonics and microsystems, STYSW 2010, p 7–9

  37. Vergés MA, Mifsud A, Serna CJ (1990) J Chem Soc Faraday Trans 86:959

    Article  Google Scholar 

  38. Pachauri V, Subramaniam C, Pradeep T (2006) Chem Phys Lett 423:240

    Article  CAS  Google Scholar 

  39. Abussaud BA (2021) Sustainability 13:11716

    Article  CAS  Google Scholar 

  40. Zhu L, Zeng W (2017) Sens Actuators A Phys 267:242

    Article  CAS  Google Scholar 

  41. Zhu L, Li Y, Zeng W (2018) Appl Surf Sci 427:281

    Article  CAS  Google Scholar 

  42. Kumar R, Al-Dossary O, Kumar G, Umar A (2015) NanoMicro Lett 7:97

    Google Scholar 

  43. Banimuslem H, Hassan A, Basova T, Yushina I, Durmus M, Tuncel S, Esenpinar AA, Gürek AG, Ahsen V (2014) Key Eng Mater 605:461–464

  44. Schroeder V, Suchol S, Maggie H, Sibo L, Timothy S (2018) Chem Rev 119:1

    Google Scholar 

  45. Zhang Y, Suc C, Liu Z, Li J (2006) J Phys Chem B 110:45

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the provision of instruments and necessary materials by (1) Department of Physics, College of Science, University of Babylon, (2) Department of Physics, College of Education for pure Sciences, University of Babylon, and (3) Medical physics Department, College of Technology and Health Sciences, Al-Mustaqbal University, to help in completing this work.

Author information

Authors and Affiliations

Authors

Contributions

The contribution of the authors is as follows: SAJ and HAJB wrote the main manuscript and prepared all of the samples for testing; the remaining authors prepared the figures and discussed the main results, and made a review for the work.

Corresponding author

Correspondence to Saad Abbas Jasim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, S.A., Banimuslem, H.A.J., Alsultany, F.H. et al. Ammonia and nitrogen dioxide detection using ZnO/CNT nanocomposite synthesized by sol–gel technique. J Sol-Gel Sci Technol 108, 734–741 (2023). https://doi.org/10.1007/s10971-023-06190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06190-y

Keywords

Navigation