Skip to main content
Log in

Structure and properties of monolithic cellulose aerogels prepared from oil palm cellulose microfiber (OPMFC) using alkaline/urea solvent system potentially for solar thermal applications

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A biodegradable three-dimensional porous structure with thermal strength has drawn remarkable attention in solar thermal insulation. A strong hydrogen bonding caused the cellulose fibers to entangle and form a highly flexible and porous structure. In this study, monolithic aerogel was prepared from oil palm-based microfibril cellulose using an alkaline/urea solvent system and epichlorohydrin (ECH) as a cross-linker as a potential insulator for solar thermal energy application microfibril cellulose at various weight percentages (3%, 4%, and 5%) was dissolved in NaOH/urea/water and LiOH/urea/water solvent systems at 15 °C. The cellulosic solution was allowed to age for 24 h and subsequently gelled at 50 °C for 24 h to form a solid gel before washing. Following solvent exchange and subsequent freeze-drying, porous cellulose aerogel was produced. FESEM analysis reveals cellulose concentration influences the internal morphology of the aerogel, while thermal gravimetric analysis has recorded the aerogel to withstand thermal shock up to 266.8 °C. At 4% microfibril cellulose content, the monolithic aerogel exhibits a relatively homogenized pore with a honeycomb-like structure. It also demonstrated reasonably strong solar absorption capabilities within the NIR solar spectra region, confirming its potential for solar thermal extraction applications.

Graphical Abstract

Highlights

  • An environmentally conscious approach with utilization of oil palm cellulose microfiber producing exceptional structural and thermal properties of aerogel.

  • Monolithic cellulose-based aerogels’ entangled and highly flexible structure fosters a cohesive and porous network for enhanced thermal performance.

  • A remarkable three-dimensional porous structure with thermal strength, demonstrating an exceptional solar absorption capability within the near-infrared region, providing significant potential for efficient solar thermal energy applications.

  • The durability test confirms consistent near-infrared absorption over the aging process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang Q, Li J, Yang H et al. (2017) Performance analysis on a high-temperature solar evacuated receiver with an inner radiation shield. Energy 139:447–458. https://doi.org/10.1016/j.energy.2017.07.147

    Article  Google Scholar 

  2. Chen X, Xia X-L, Yan X-W, Sun C (2017) Heat transfer analysis of a volumetric solar receiver with composite porous structure. Energy Convers Manag 136:262–269. https://doi.org/10.1016/j.enconman.2017.01.018

    Article  Google Scholar 

  3. Sopian K, Supranto, Daud WR et al. (1999) Thermal performance of the double-pass solar collector with and without porous media. Renew Energy 18:557–564. https://doi.org/10.1016/S0960-1481(99)00007-5

    Article  Google Scholar 

  4. Yashim MM, Sainorudin MH, Mohammad M et al. (2021) Recent advances on lightweight aerogel as a porous receiver layer for solar thermal technology application. Sol Energy Mater Sol Cells 228:111131. https://doi.org/10.1016/j.solmat.2021.111131

    Article  CAS  Google Scholar 

  5. Oliveira FAC, Fernandes JC, Galindo J et al. (2019) Thermal resistance of solar volumetric absorbers made of mullite, brown alumina and ceria foams under concentrated solar radiation. Sol Energy Mater Sol Cells 194:121–129. https://doi.org/10.1016/j.solmat.2019.02.008

    Article  CAS  Google Scholar 

  6. Chen X, Xia X-L, Meng X-L, Dong X-H (2015) Thermal performance analysis on a volumetric solar receiver with double-layer ceramic foam. Energy Convers Manag 97:282–289. https://doi.org/10.1016/j.enconman.2015.03.066

    Article  Google Scholar 

  7. Zheng X, Gao X, Huang Z et al. (2021) Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage. Sol Energy Mater Sol Cells 226:111083. https://doi.org/10.1016/j.solmat.2021.111083

    Article  CAS  Google Scholar 

  8. Wu L, Zhao B, Ao X et al. (2021) Performance analysis of the aerogel-based PV/T collector: a numerical study. Sol Energy 228:339–348. https://doi.org/10.1016/j.solener.2021.09.077

    Article  CAS  Google Scholar 

  9. Zhao L, Bhatia B, Yang S et al. (2019) Harnessing heat beyond 200 °C from unconcentrated sunlight with nonevacuated transparent aerogels. ACS Nano 13:7508–7516. https://doi.org/10.1021/acsnano.9b02976

    Article  CAS  Google Scholar 

  10. Günay AA, Kim H, Nagarajan N et al. (2018) Optically transparent thermally insulating silica aerogels for solar thermal insulation. ACS Appl Mater Interfaces 10:12603–12611. https://doi.org/10.1021/acsami.7b18856

    Article  CAS  Google Scholar 

  11. Lao X, Xu X, Wu J, Xu X (2017) High-temperature alloy/honeycomb ceramic composite materials for solar thermal storage applications: preparation and stability evaluation. Ceram Int 43:4583–4593. https://doi.org/10.1016/j.ceramint.2016.12.119

    Article  CAS  Google Scholar 

  12. Zhang Z, Mu P, He J et al. (2019) Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation. ChemSusChem 12:426–433. https://doi.org/10.1002/cssc.201802406

    Article  CAS  Google Scholar 

  13. Li Y, Samad YA, Polychronopoulou K et al. (2014) From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A 2:7759–7765. https://doi.org/10.1039/c4ta00839a

    Article  CAS  Google Scholar 

  14. Storer DP, Phelps JL, Wu X, et al (2020) Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.0c01707

  15. O’sullvian AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  16. Qiu X, Hu S (2013) “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6:738–781. https://doi.org/10.3390/ma6030738

    Article  Google Scholar 

  17. He M, Alam MK, Liu H et al. (2021) Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos Commun 28:100936. https://doi.org/10.1016/j.coco.2021.100936

    Article  Google Scholar 

  18. Gupta P, Singh B, Agrawal AK, Maji PK (2018) Low density and high strength nanofibrillated cellulose aerogel for thermal insulation application. Mater Des 158:224–236. https://doi.org/10.1016/j.matdes.2018.08.031

    Article  CAS  Google Scholar 

  19. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113. https://doi.org/10.1016/j.carbpol.2016.09.068

    Article  CAS  Google Scholar 

  20. Jiang F, Liu H, Li Y et al. (2018) Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Appl Mater Interfaces 10:1104–1112. https://doi.org/10.1021/acsami.7b15125

    Article  CAS  Google Scholar 

  21. Medronho B, Lindman B (2014) Competing forces during cellulose dissolution: from solvents to mechanisms. Curr Opin Colloid Interface Sci 19:32–40. https://doi.org/10.1016/j.cocis.2013.12.001

    Article  CAS  Google Scholar 

  22. Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55. https://doi.org/10.1007/s10570-015-0779-8

    Article  CAS  Google Scholar 

  23. Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1:858–870. https://doi.org/10.1021/sc400085a

    Article  CAS  Google Scholar 

  24. Huang K, Wang Y (2022) Recent applications of regenerated cellulose films and hydrogels in food packaging. Curr Opin Food Sci 43:7–17. https://doi.org/10.1016/j.cofs.2021.09.003

    Article  CAS  Google Scholar 

  25. Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res https://doi.org/10.1016/j.carres.2006.12.023

  26. Cai J, Kimura S, Wada M et al. (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154. https://doi.org/10.1002/cssc.200700039

    Article  CAS  Google Scholar 

  27. Cai J, Zhang L, Zhou J, et al (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun https://doi.org/10.1002/marc.200400172

  28. Wang S, Lu A, Zhang L (2016) Recent advances in regenerated cellulose materials. Prog Polym Sci 53:169–206. https://doi.org/10.1016/j.progpolymsci.2015.07.003

    Article  CAS  Google Scholar 

  29. Jiang F, Hsieh Y Lo (2014) Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J Mater Chem A. https://doi.org/10.1039/c3ta13629a

  30. Tran DT, Nguyen ST, Do ND, et al (2020) Green aerogels from rice straw for thermal, acoustic insulation and oil spill cleaning applications. Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123363

  31. Lin J, Yu L, Tian F, et al (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.03.045

  32. Do NHN, Luu TP, Thai QB, et al (2020) Advanced fabrication and application of pineapple aerogels from agricultural waste. Mater Technol. https://doi.org/10.1080/10667857.2019.1688537

  33. Nguyen TH, Nguyen VV, Nguyen NT, et al (2022) Preparation, characterization and CDI application of KOH-activated porous waste-corn-stalk-based carbon aerogel. J Porous Mater. https://doi.org/10.1007/s10934-022-01411-1

  34. Wang W, Yang D, Mou L et al. (2022) Remodeling of waste corn stalks into renewable, compressible and hydrophobic biomass-based aerogel for efficient and selective oil/organic solvent absorption. Colloids Surf A: Physicochem Eng Asp 645:128940. https://doi.org/10.1016/j.colsurfa.2022.128940

    Article  CAS  Google Scholar 

  35. Onoja E, Chandren S, Abdul Razak FI et al. (2019) Oil palm (Elaeis guineensis) biomass in Malaysia: the present and future prospects. Waste Biomass- Valoriz 10:2099–2117. https://doi.org/10.1007/s12649-018-0258-1

    Article  CAS  Google Scholar 

  36. Subramaniam V, Loh SK, Aziz AA (2021) GHG analysis of the production of crude palm oil considering the conversion of agricultural wastes to by-products. Sustain Prod Consum. https://doi.org/10.1016/j.spc.2021.09.004

  37. Burhani D, Septevani AA, Setiawan R, et al (2021) Self-assembled behavior of ultralightweight aerogel from a mixture of cnc/cnf from oil palm empty fruit bunches. Polymers. https://doi.org/10.3390/polym13162649

  38. Yahya EB, Abdul Khalil HPS, Ahmad MI, et al (2023) Cleaner approach of preparing antibacterial bioaerogel scaffolds using oil palm waste nanocellulose. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2022.115897

  39. Ago M, Ferrer A, Rojas OJ (2016) Starch-based biofoams reinforced with lignocellulose nanofibrils from residual palm empty fruit bunches: water sorption and mechanical strength. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b01279

  40. Mohd NH, Kargazadeh H, Miyamoto M et al. (2021) Aminosilanes grafted nanocrystalline cellulose from oil palm empty fruit bunch aerogel for carbon dioxide capture. J Mater Res Technol 13:2287–2296. https://doi.org/10.1016/j.jmrt.2021.06.018

    Article  CAS  Google Scholar 

  41. Yashim MM, Mohammad M, Asim N et al. (2021) Characterisation of microfibrils cellulose isolated from oil palm frond using high-intensity ultrasonication. IOP Conf Ser: Mater Sci Eng 1176:012004. https://doi.org/10.1088/1757-899x/1176/1/012004

    Article  CAS  Google Scholar 

  42. Kumneadklang S, O-Thong S, Larpkiattaworn S (2019) Characterization of cellulose fiber isolated from oil palm frond biomass. Mater Today: Proc 17:1995–2001. https://doi.org/10.1016/j.matpr.2019.06.247

    Article  CAS  Google Scholar 

  43. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/Urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548. https://doi.org/10.1002/mabi.200400222

    Article  CAS  Google Scholar 

  44. Liu H, Tian X, Xiang X, Chen S (2022) Preparation of carboxymethyl cellulose/graphene composite aerogel beads and their adsorption for methylene blue. Int J Biol Macromol 202:632–643. https://doi.org/10.1016/j.ijbiomac.2022.01.052

    Article  CAS  Google Scholar 

  45. Dilamian M, Noroozi B (2021) Rice straw agri-waste for water pollutant adsorption: relevant mesoporous super hydrophobic cellulose aerogel. Carbohydr Polym 251:117016. https://doi.org/10.1016/j.carbpol.2020.117016

    Article  CAS  Google Scholar 

  46. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc. https://doi.org/10.1021/ja01269a023

  47. Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc. https://doi.org/10.1021/ja01145a126

  48. Park S, Baker JO, Himmel ME et al. (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  Google Scholar 

  49. Amiralian N, Annamalai PK, Memmott P, Martin DJ (2015) Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods. Cellulose 22:2483–2498. https://doi.org/10.1007/s10570-015-0688-x

    Article  Google Scholar 

  50. Sofla MRK, Brown RJ, Tsuzuki T, Rainey TJ (2016) A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods. Adv Nat Sci: Nanosci Nanotechnol 7:035004. https://doi.org/10.1088/2043-6262/7/3/035004

    Article  CAS  Google Scholar 

  51. Gupta V, Ramakanth D, Verma C, et al (2021) Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace. Biomass Convers Biorefin https://doi.org/10.1007/s13399-021-01852-9

  52. Chowdhury ZZ, Hamid SBA (2016) Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process. BioResources 11. https://doi.org/10.15376/biores.11.2.3397-3415

  53. Gatot SH (2012) Synthesis and characterization of sodium carboxymethylcellulose from pod husk of Cacao (Theobroma cacao L.). Afr J Food Sci 6:180–185. https://doi.org/10.5897/AJFS12.020

    Article  CAS  Google Scholar 

  54. Li H, Zhang H, Xiong L et al. (2019) Isolation of cellulose from wheat straw and its utilization for the preparation of carboxymethyl cellulose. Fibers Polym 20:975–981. https://doi.org/10.1007/s12221-019-7717-6

    Article  CAS  Google Scholar 

  55. Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: an overview. 2014

  56. Li R, Wang S, Lu A, Zhang L (2015) Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose. https://doi.org/10.1007/s10570-014-0542-6

  57. Shi JJ, Lu L Bin, Zhang JY (2013) An environment-friendly thermal insulation material from porous cellulose aerogel. Adv Mater Res 773:487–491. https://doi.org/10.4028/www.scientific.net/AMR.773.487

  58. Zhou J, Chang C, Zhang R, Zhang L (2007) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809. https://doi.org/10.1002/mabi.200700007

    Article  CAS  Google Scholar 

  59. Wan C, Lu Y, Jiao Y et al. (2015) Cellulose aerogels from cellulose–NaOH/PEG solution and comparison with different cellulose contents. Mater Sci Technol 31:1096–1102. https://doi.org/10.1179/1743284714Y.0000000677

    Article  CAS  Google Scholar 

  60. Van Nguyen TT, Tri N, Tran BA et al. (2021) Synthesis, characteristics, oil adsorption, and thermal insulation performance of cellulosic aerogel derived from water hyacinth. ACS Omega 6:26130–26139. https://doi.org/10.1021/acsomega.1c03137

    Article  CAS  Google Scholar 

  61. Zhao Y, Zhong K, Liu W, et al (2020) Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose. https://doi.org/10.1007/s10570-020-03309-0

  62. Sing KSW(1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) 57:603–619 Pure Appl Chem 57:603–19. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  63. Gao H, Bo L, Liu P et al. (2019) Ambient pressure dried flexible silica aerogel for construction of monolithic shape-stabilized phase change materials. Sol Energy Mater Sol Cells 201:110122. https://doi.org/10.1016/j.solmat.2019.110122

    Article  CAS  Google Scholar 

  64. Kamal Mohamed SM, Ganesan K, Milow B, Ratke L (2015) The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads. RSC Adv 5:90193–90201. https://doi.org/10.1039/C5RA17366C

    Article  CAS  Google Scholar 

  65. Salleh KM, Zakaria S, Sajab MS et al. (2019) Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. Int J Biol Macromol 131:50–59. https://doi.org/10.1016/j.ijbiomac.2019.03.028

    Article  CAS  Google Scholar 

  66. Granqvist CG, Niklasson GA (2018) Solar energy materials for thermal applications: a primer. Sol Energy Mater Sol Cells 180:213–226. https://doi.org/10.1016/j.solmat.2018.02.004

    Article  CAS  Google Scholar 

  67. Tsao Y-C, Søndergaard T, Skovsen E, et al (2013) Pore size dependence of diffuse light scattering from anodized aluminum solar cell backside reflectors. Optics Express. https://doi.org/10.1364/oe.21.000a84

  68. Gamage S, Banerjee D, Alam MM, et al (2021) Reflective and transparent cellulose-based passive radiative coolers. Cellulose. https://doi.org/10.1007/s10570-021-04112-1

  69. Muscio A (2018) The solar reflectance index as a tool to forecast the heat released to the urban environment: potentiality and assessment issues. Climate 6:12. https://doi.org/10.3390/cli6010012

    Article  Google Scholar 

  70. Chen M, Pang D, Yan H (2022) Highly solar reflectance and infrared transparent porous coating for non-contact heat dissipations. iScience 25:104726. https://doi.org/10.1016/j.isci.2022.104726

    Article  CAS  Google Scholar 

  71. Berardi U, Nosrati RH (2018) Long-term thermal conductivity of aerogel-enhanced insulating materials under different laboratory aging conditions. Energy. https://doi.org/10.1016/j.energy.2018.01.053

  72. Chal B, Foray G, Yrieix B, et al (2018) Durability of silica aerogels dedicated to superinsulation measured under hygrothermal conditions. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2018.05.047

  73. Maia J, Pedroso M, Ramos NMM, et al (2021) Durability of a new aerogel cement-based rendering system under distinct accelerated aging conditions. Materials. https://doi.org/10.3390/ma14185413

Download references

Acknowledgements

The authors also thank the Research Laboratory staff of the University of Technology MARA, Bukit Besi Campus, for assisting with the laboratory work.

Funding

Funding from the Fundamental Research Grant Scheme (FRGS/1/2019/TK10/UKM/02/1) by the Ministry of Higher Education of Malaysia is gratefully acknowledged for the completion of our original work.

Author information

Authors and Affiliations

Authors

Contributions

MMY: Methodology, Investigation, Characterization, Formal analysis, Writing—original draft. MM: Conceptualization, Visualization, Writing—review & editing NA: Data curation, Validation, Writing—review & editing. AF: Funding acquisition, Project administration.

Corresponding author

Correspondence to Masita Mohammad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mat Yashim, M., Mohammad, M., Asim, N. et al. Structure and properties of monolithic cellulose aerogels prepared from oil palm cellulose microfiber (OPMFC) using alkaline/urea solvent system potentially for solar thermal applications. J Sol-Gel Sci Technol 108, 47–59 (2023). https://doi.org/10.1007/s10971-023-06189-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06189-5

Keywords

Navigation