Skip to main content
Log in

Multi-field and multi-scale characterization of non-supercritical dried silica aerogel-based glass blankets: investigating thermal, mechanical, acoustic, and fire performance

  • Original Paper: Nano- and macroporous materials(aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aerogel is a solid material with a porous structure created by replacing the liquid component of a gel with gas. It has low density, excellent thermal insulation, high surface area, and is hydrophobic. Aerogel blankets are reinforced, flexible, and ideal for thermal insulation, but drying them using a supercritical method is challenging for large-scale production. Researchers are developing more efficient methods to produce aerogel blankets, which could increase their adoption in various industries. This research aims to design a portable, lightweight, super-insulating aerogel blanket dried under ambient conditions for various applications. Bulk density, mechanical properties, acoustic properties, and thermal conductivity are used to assess the impact of silica concentration on aerogel-enhanced blankets. The adhesion between the aerogel and the blanket’s fiber is influenced by the concentration of silica in the aerogel material, as revealed by scanning electron microscopy. Prepared aerogel blankets have excellent thermal conductivity (0.021 W m−1 K−1) and hydrophobic behavior. Prepared blankets qualify for the fire-proof requirement as per norm ISO2685 at 64 kW/m2 flux for 15 minutes. Aerogel blankets produced under ambient drying approach have properties comparable to those produced through the supercritical drying process. This represents a significant advancement in the commercialization of aerogel blankets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kistler SS, Caldwell AG (1934) Thermal conductivity of silica aërogel. Ind Eng Chem 26(6):658–662. https://doi.org/10.1021/ie50294a016

    Article  CAS  Google Scholar 

  2. Wang J, Petit D, Ren S (2020) Transparent thermal insulation silica aerogels. Nanoscale Adv 2(12):5504–5515. https://doi.org/10.1039/d0na00655f

    Article  CAS  Google Scholar 

  3. Zhang Y et al. (2021) Rapid synthesis of dual-mesoporous silica aerogel with excellent adsorption capacity and ultra-low thermal conductivity. J Non Cryst Solids 555:120547. https://doi.org/10.1016/J.JNONCRYSOL.2020.120547

    Article  CAS  Google Scholar 

  4. Gao B, Lu S, Kalulu M, Oderinde O and Ren L, (2017) Synthesis of silica aerogel monoliths with controlled specific surface areas and pore sizes. Mater Res Express, 4(7), https://doi.org/10.1088/2053-1591/aa748e

  5. Aravind PR, Soraru GD (2011) High surface area methyltriethoxysilane-derived aerogels by ambient pressure drying. J Porous Mater 18(2):159–165. https://doi.org/10.1007/s10934-010-9366-4

    Article  CAS  Google Scholar 

  6. Xiong X, Yang T, Mishra R, Militky J (2016) Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym 17(10):1709–1714. https://doi.org/10.1007/s12221-016-6745-8

    Article  CAS  Google Scholar 

  7. Wen S, Zhu J, Yin Q, Bi Y, Ren H, Zhang L (2020) Fabrication of infrared opacifiers loaded Al2O3 aerogel-SiO2 fiber mat composites with high thermal resistance. Int J Nanosci 19(3), https://doi.org/10.1142/S0219581X19500212

  8. Tascan M, Vaughn EA, Stevens KA, Brown PJ (2011) Effects of total surface area and fabric density on the acoustical behavior of traditional. J Text Inst 102(9):746–751. https://doi.org/10.1080/00405000.2010.515731

    Article  Google Scholar 

  9. Zhi C et al. (2020) Warp-knitted spacer fabric reinforced syntactic foam: a compression modulus meso-mechanics theoretical model and experimental verification. Polymers 12(2) https://doi.org/10.3390/polym12020286

  10. Rwawiire S, Tomkova B, Militky J, Hes L, Kale BM (2017) Acoustic and thermal properties of a cellulose nonwoven natural fabric (barkcloth). Appl Acoust 116:177–183. https://doi.org/10.1016/J.APACOUST.2016.09.027

    Article  Google Scholar 

  11. Fu R et al. (2003) The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Adv Funct Mater 13(7):558–562. https://doi.org/10.1002/adfm.200304289

    Article  CAS  Google Scholar 

  12. Wen S, Ren H, Zhu J, Bi Y, Zhang L (2019) Fabrication of Al2O3 aerogel-SiO2 fiber composite with enhanced thermal insulation and high heat resistance. J Porous Mater 26(4):1027–1034

    Article  CAS  Google Scholar 

  13. Chakraborty S, Pisal AA, Kothari VK, Venkateswara Rao A (2016) Synthesis and characterization of fibre reinforced silica aerogel blankets for thermal protection. Adv Mater Sci Eng 2016, https://doi.org/10.1155/2016/2495623

  14. Huang Y et al. (2018) Mechanical reinforced fiber needle felt/silica aerogel composite with its flammability. J Sol-Gel Sci Technol 88(1):129–140. https://doi.org/10.1007/s10971-018-4796-6

    Article  CAS  Google Scholar 

  15. Li C, Cheng X, Li Z, Pan Y, Huang Y, Gong L (2017) Mechanical, thermal and flammability properties of glass fiber film/silica aerogel composites. J Non Cryst Solids 457:52–59. https://doi.org/10.1016/j.jnoncrysol.2016.11.017

    Article  CAS  Google Scholar 

  16. Boukind S et al. (2021) Ambient pressure drying as an advanced approach to the synthesis of silica aerogel composite for building thermal insulation. J Nat Fibers, https://doi.org/10.1080/15440478.2021.1993486/FORMAT/EPUB

  17. Wang L, Feng J, Jiang Y, Li L, Feng J (2019) Elastic methyltrimethoxysilane based silica aerogels reinforced with polyvinylmethyldimethoxysilane. RSC Adv 9(19):10948–10957. https://doi.org/10.1039/c9ra00970a

    Article  CAS  Google Scholar 

  18. Karamikamkar S, Naguib HE, Park CB (2020) Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Adv Colloid Interface Sci 276:102101

    Article  CAS  Google Scholar 

  19. Leventis N, Palczer A, McCorkle L, Zhang G, Sotiriou-Leventis C (2005) Nanoengineered silica-polymer composite aerogels with No need for supercritical fluid drying. J Sol-Gel Sci Technol 35(2):99–105. https://doi.org/10.1007/s10971-005-1372-7

    Article  CAS  Google Scholar 

  20. Ul Haq E, Zaidi SFA, Zubair M, Abdul Karim MR, Padmanabhan SK, Licciulli A (2017) Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energy Build 151:494–500. https://doi.org/10.1016/j.enbuild.2017.07.003

    Article  Google Scholar 

  21. Udio C, Almeida MR, Ghica ME, Ramalho AL, Durães L (2021) Silica-based aerogel composites reinforced with different aramid fibres for thermal insulation in Space environments. J Mater Sci 56, https://doi.org/10.1007/s10853-021-06142-3

  22. Ślosarczyk A, Barełkowski M, Niemier S, Jakubowska P (2015) Synthesis and characterisation of silica aerogel/carbon microfibers nanocomposites dried in supercritical and ambient pressure conditions. J Sol Gel Sci Technol 76(1):227–232. https://doi.org/10.1007/s10971-015-3798-x

    Article  CAS  Google Scholar 

  23. Thapliyal PC, Singh K (2014) Aerogels as promising thermal insulating materials: an overview. J Mater 2014:1–10. https://doi.org/10.1155/2014/127049

    Article  CAS  Google Scholar 

  24. Delhi N (2006) MINISTRY OF LAW AND JUSTICE (Legislative Department), 2(1):1–69

  25. The Energy Conservation (Amendment) Bill (2022). https://prsindia.org/billtrack/the-energy-conservation-amendment-bill-2022. Accessed 13 Feb 2023

  26. Linhares T, Pessoa De Amorim MT, Durães L, Teresa Linhares, de Amorim MTP, Durães L (2019) Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications. J Mater Chem A 7(40):22768–22802. https://doi.org/10.1039/C9TA04811A

    Article  CAS  Google Scholar 

  27. Baetens R, Jelle BP, Gustavsen A. (2011) Aerogel insulation for building applications: A state-of-the-art review. Energy Build 43.4:761–769

    Article  Google Scholar 

  28. Berardi US, (Mark) Zaidi S (2019) Characterization of commercial aerogel-enhanced blankets obtained with supercritical drying and of a new ambient pressure drying blanket. Energy Build 198:542–552. https://doi.org/10.1016/j.enbuild.2019.06.027

  29. Mazrouei-Sebdani Z et al. (2022) Multiple assembly strategies for silica aerogel-fiber combinations-A review. Materials & Design 223:111228

    Article  CAS  Google Scholar 

  30. Siligardi C, Miselli P, Francia E, Lassinantti Gualtieri M (2017) Temperature-induced microstructural changes of fiber-reinforced silica aerogel (FRAB) and rock wool thermal insulation materials: a comparative study. Energy Build 138:80–87. https://doi.org/10.1016/J.ENBUILD.2016.12.022

    Article  Google Scholar 

  31. Hoseini A, McCague C, Andisheh-Tadbir M, Bahrami M (2016) Aerogel blankets: from mathematical modeling to material characterization and experimental analysis. Int J Heat Mass Transf 93:1124–1131. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.030

    Article  CAS  Google Scholar 

  32. Bheekhun N, Rahim A, Talib A, Hassan MR (2013) Aerogels in aerospace: a review. Adv Mater Sci Eng 2013:1–18

    Article  Google Scholar 

  33. Circular, Advisory. Powerplant Installation and Propulsion System Component Fire Protection Test Methods, Standards, and Criteria. US Department of Transportation, Federal Aviation Administration: 20–135

  34. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36(1):52–64. https://doi.org/10.1021/j150331a003

    Article  CAS  Google Scholar 

  35. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374(6521):439–443

    Article  CAS  Google Scholar 

  36. Wu H, Chen Y, Chen Q, Ding Y, Zhou X, Gao H (2013) Synthesis of flexible aerogel composites reinforced with electrospun nanofibers and microparticles for thermal insulation. J Nanomater 2013, https://doi.org/10.1155/2013/375093

  37. Patil SP, Shendye P, Markert B (2020) Molecular dynamics simulations of silica aerogel nanocomposites reinforced by glass fibers, graphene sheets and carbon nanotubes: a comparison study on mechanical properties. Compos Part B Eng 190:107884. https://doi.org/10.1016/J.COMPOSITESB.2020.107884

    Article  CAS  Google Scholar 

  38. Zhang ZH et al. (2022) Silicone/graphene oxide co-cross-linked aerogels with wide-temperature mechanical flexibility, super-hydrophobicity and flame resistance for exceptional thermal insulation and oil/water separation. J Mater Sci Technol 114:131–142. https://doi.org/10.1016/J.JMST.2021.11.012

    Article  CAS  Google Scholar 

  39. Venkataraman M, Mishra R, Jasikova D, Kotresh TMT, Militky J (2015) Thermodynamics of aerogel-treated nonwoven fabrics at subzero temperatures. J Ind Text 45(3):387–404. https://doi.org/10.1177/1528083714534711

    Article  CAS  Google Scholar 

Download references

Funding

This research has been supported by General Electric project funded under grant agreement MI02163.

Author contributions

JS: Conceptualization, experiment, writing. SS: Testing, Figure preparation, writing. OS : Testing of the sample and analysis. JS: Supervision and review. BKB: Supervision and review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J., Shukla, S., Singh, O. et al. Multi-field and multi-scale characterization of non-supercritical dried silica aerogel-based glass blankets: investigating thermal, mechanical, acoustic, and fire performance. J Sol-Gel Sci Technol 108, 60–72 (2023). https://doi.org/10.1007/s10971-023-06186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06186-8

Keywords

Navigation