Skip to main content
Log in

Preparation and characterization of mikania micrantha (MM)/chitosan (CS) nanocomposites with polyvinyl alcohol (PVA) back layer

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we present the formation of mikania micrantha (MM)/chitosan (CS) electrospun nanocomposites using polyvinyl alcohol (PVA) back layer. The therapeutic compounds of MM were extracted through a methanol extraction process. Results show that the nanocomposites exhibit antibacterial activity against gram-positive (S. aureus) and gram-negative (E. coli) bacteria, with a zone of inhibition of around 20–25 mm. MM-2/CS was found to be more effective than MM-1/CS due to the increased amount of MM extraction. The nanofibers exhibited smooth fiber formation with a mean diameter of around 173–185 nm as observed by SEM. Moreover, the incorporation of PVA with MM-chitosan nanocomposites improved their thermal and moisture management properties. Cytotoxicity test showed that only around 5% of the exposed cells survived in the Vero cell line. The FTIR spectra demonstrated the presence of functional groups of PVA, chitosan, and MM in the nanofibers. Based on our findings, we suggest that nanofibers prepared from bioactive agents of MM may have the potential for biomedical applications, such as wound dressing materials.

Graphical Abstract

Highlights

  • Biobased antibacterial nanofibers for potential biomedical applications.

  • Plant extract (Mikania micrantha) was employed in biopolymers for electrospinning.

  • Smooth fiber formation was observed by SEM analysis.

  • Prepared nanocomposites demonstrated good mechanical, absorbance, and antibacterial properties.

  • PVA back layer improved the overall properties of nano mat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4(1):59–64

    Article  CAS  Google Scholar 

  2. Li Y, Li J, Li Y, Wang X-X, Cao A-C (2013) Antimicrobial Constituents of the Leaves of Mikania micrantha HB K. Plos one 8(10):e76725

    Article  CAS  Google Scholar 

  3. Zohmachhuana A, Tlaisun M, Mathipi V, Khawlhring L, Priya JS (2022) Suppression of the RAGE gene expression in RAW 264.7 murine leukemia cell line by ethyl acetate extract of Mikania micrantha (L.) Kunth. J Appl Biol Biotechnol 10(5):107–114

    Article  CAS  Google Scholar 

  4. Islam MA, Begum HA, Shahid MA, Ali A (2020) Antibacterial electrospun nanofibers from poly (vinyl alcohol) and Mikania micrantha with augmented moisture properties: formation and evaluation. J Text Inst 112(10):1–9

    Google Scholar 

  5. Islam MA, Begum HA, Shahid MA, Ali A (2021) Antibacterial electrospun nanofibers from poly (vinyl alcohol) and Mikania micrantha with augmented moisture properties: formation and evaluation. J Text Inst 112(10):1602–1610

    Article  CAS  Google Scholar 

  6. Matawali A, Chin LP, Eng HS, Gansau JA (2016) Antibacterial and phytochemical investigations of Mikania micrantha HBK (Asteraceae) from Sabah, Malaysia. Trans Sci Technol 3(1-2):244–250

    Google Scholar 

  7. Zhuang S, Hao C, Feng J, Zhang X (2010) Active antifungal components of Mikania micrantha HBK. J Zhejiang Univ (Agriculture Life Sci) 36(3):293–298

    CAS  Google Scholar 

  8. Facey PC, Pascoe KO, Porter RB, Jones AD (1999) Investigation of Plants used in Jamaican Folk Medicine for Anti‐bacterial Activity. J Pharm Pharmacol 51(12):1455–1460

    Article  CAS  Google Scholar 

  9. Sheam M, Haque Z, Nain Z (2020) Towards the antimicrobial, therapeutic and invasive properties of Mikania micrantha Knuth: a brief overview. J Adv Biotechnol Exp Ther 3(2):92–101

    Article  Google Scholar 

  10. Bakir M, Facey PC, Hassan I, Mulder WH, Porter RB (2004) Mikanolide from Jamaican Mikania micrantha. Acta Crystallogr Sect C: Cryst Struct Commun 60(11):o798–o800

    Article  Google Scholar 

  11. No JTK, Baru P (2018) Isolation of antibacterial compound from the leaves of mikania micrantha kunth. Available from https://www.jpsr.pharmainfo.in/Documents/Volumes/ispst2018/jpsr112018con16.pdf

  12. Ghosh A, Das BK, Roy A, Mandal B, Chandra G (2008) Antibacterial activity of some medicinal plant extracts. J Nat Med 62(2):259–262

    Article  Google Scholar 

  13. Ali A, Islam SM, Mohebbullah M, Uddin MN, Hossain MT, Saha SK, Jamal MSI (2020) Antibacterial electrospun nanomat from nigella/PVA system embedded with silver. J Text Inst 112(4):1–7

    Google Scholar 

  14. Li R, Cheng Z, Yu X, Wang S, Han Z, Kang L (2019) Preparation of antibacterial PCL/PVP-AgNP Janus nanofibers by uniaxial electrospinning. Mater Lett 254:206–209

    Article  CAS  Google Scholar 

  15. Yang S, Liu Y, Jiang Z, Gu J, Zhang D (2018) Thermal and mechanical performance of electrospun chitosan/poly (vinyl alcohol) nanofibers with graphene oxide. Adv Compos Hybrid Mater 1(4):722–730

    Article  CAS  Google Scholar 

  16. Dziemidowicz K, Sang Q, Wu J, Zhang Z, Zhou F, Lagaron JM, Mo X, Parker GJ, Yu D-G, Zhu L-M, Williams GR (2021) Electrospinning for healthcare: recent advancements. J Mater Che 9:939–951

    CAS  Google Scholar 

  17. Hu H, Ye B, Lv Y, Zhang Q (2019) Preparing antibacterial and in-situ formable double crosslinking chitosan/hyaluronan composite hydrogels. Mater Lett 254:17–20

    Article  CAS  Google Scholar 

  18. Uddin MN, Jamal MSI, Ali MY, Darda MA, Mahedi SI (2023) Tissue engineering and the potential use of chitin. Emergent Mater 1–13

  19. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  20. Fong H (2001) Electrospinning and the formation of nanofibers. J Fiber Sci Technol 64(1):36–44

    Google Scholar 

  21. Ziyadi H, Baghali M, Bagherianfar M, Mehrali F, Faridi-Majidi R (2021) An investigation of factors affecting the electrospinning of poly (vinyl alcohol)/kefiran composite nanofibers. Adv Compos Hybrid Mater 4(3):768–779

    Article  CAS  Google Scholar 

  22. Rieger KA, Birch NP, Schiffman JD (2013) Designing electrospun nanofiber mats to promote wound healing–a review. J Mater Chem B 1(36):4531–4541

    Article  CAS  Google Scholar 

  23. Zhang Y, Lim CT, Ramakrishna S, Huang Z-M (2005) Recent development of polymer nanofibers for biomedical and biotechnological applications. J Mater Sci: Mater Med 16(10):933–946

    CAS  Google Scholar 

  24. Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H, Takato T, Kobayashi H (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63(9-10):754–756

    Article  CAS  Google Scholar 

  25. Ali A, Mohebbullah M, Shahid MA, Alam S, Uddin MN, Miah MS, Jamal MSI, Khan MS (2020) PVA-Nigella sativa nanofibrous mat: antibacterial efficacy and wound healing potentiality. J Text Inst 112(10):1–11

    Google Scholar 

  26. Chen Y, Qian Q, Liu X, Xiao L, Chen Q (2010) LaOCl nanofibers derived from electrospun PVA/Lanthanum chloride composite fibers. Mater Lett 64(1):6–8

    Article  CAS  Google Scholar 

  27. Stone SA, Gosavi P, Athauda TJ, Ozer RR (2013) In situ citric acid crosslinking of alginate/polyvinyl alcohol electrospun nanofibers. Mater Lett 112:32–35

    Article  CAS  Google Scholar 

  28. Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J (2003) Fiber mats of poly (vinyl alcohol)/silica composite via electrospinning. Mater Lett 57(9-10):1579–1584

    Article  CAS  Google Scholar 

  29. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3-4):493–497

    Article  CAS  Google Scholar 

  30. Krumova M, Lopez D, Benavente R, Mijangos C, Perena J (2000) Effect of crosslinking on the mechanical and thermal properties of poly (vinyl alcohol). Polymer 41(26):9265–9272

    Article  CAS  Google Scholar 

  31. Shahid MA, Ali A, Uddin MN, Miah S, Islam SM, Mohebbullah M, and Jamal MSI (2020) Antibacterial wound dressing electrospun nanofibrous material from polyvinyl alcohol, honey and Curcumin longa extract. J Industrial Text

  32. Liu C, Lin Y, Dong Y, Wu Y, Bao Y, Yan H, Ma J (2020) Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance. Adv Compos Hybrid Mater 3(3):402–414

    Article  Google Scholar 

  33. Mangiapia G, Ricciardi R, Auriemma F, De Rosa C, Lo Celso F, Triolo R, Heenan RK, Radulescu A, Tedeschi AM, D'Errico G (2007) Mesoscopic and microscopic investigation on poly (vinyl alcohol) hydrogels in the presence of sodium decylsulfate. J Phys Chem B 111(9):2166–2173

    Article  CAS  Google Scholar 

  34. Qi M, Gu Y, Sakata N, Kim D, Shirouzu Y, Yamamoto C, Hiura A, Sumi S, Inoue K (2004) PVA hydrogel sheet macroencapsulation for the bioartificial pancreas. Biomaterials 25(27):5885–5892

    Article  CAS  Google Scholar 

  35. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700

    Article  CAS  Google Scholar 

  36. Chandy T, Sharma CP (1990) Chitosan-as a biomaterial. Biomater, Artif cells Artif organs 18(1):1–24

    Article  CAS  Google Scholar 

  37. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    Article  CAS  Google Scholar 

  38. Xu J, Zhang J, Gao W, Liang H, Wang H, Li J (2009) Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater Lett 63(8):658–660

    Article  CAS  Google Scholar 

  39. Liu Y, Park M, Shin HK, Pant B, Park S-J, Kim H-Y (2014) Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater Lett 132:23–26

    Article  CAS  Google Scholar 

  40. Kim JH, Lee H, Jatoi AW, Im SS, Lee JS, Kim I-S (2016) Juniperus chinensis extracts loaded PVA nanofiber: Enhanced antibacterial activity. Mater Lett 181:367–370

    Article  CAS  Google Scholar 

  41. Shekarforoush E, Ajalloueian F, Zeng G, Mendes AC, Chronakis IS (2018) Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mater Lett 228:322–326

    Article  CAS  Google Scholar 

  42. Ali A, Shahid MA, Hossain MD, Islam MN (2019) Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract. Int J Biol Macromol 138:13–20

    Article  CAS  Google Scholar 

  43. Saifuddin N, Dinara S (2011) Pretreatment of palm oil mill effluent (POME) using magnetic chitosan. E-J Chem 8(S1):S67–S78

    Article  CAS  Google Scholar 

  44. Satpathy A, Pal A, Sengupta S, Das A, Hasan MM, Ratha I, Barui A, Bodhak S (2019) Bioactive nano-hydroxyapatite doped electrospun PVA-chitosan composite nanofibers for bone tissue engineering applications. J Indian Inst Sci 99:289–302

    Article  Google Scholar 

  45. Fathollahipour S, Abouei Mehrizi A, Ghaee A, Koosha M (2015) Electrospinning of PVA/chitosan nanocomposite nanofibers containing gelatin nanoparticles as a dual drug delivery system. J Biomed Mater Res Part A 103(12):3852–3862

    Article  CAS  Google Scholar 

  46. Koosha M, Mirzadeh H, Shokrgozar MA, Farokhi M (2015) Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv 5(14):10479–10487

    Article  CAS  Google Scholar 

  47. Liu C, Chan KW, Shen J, Wong HM, Yeung KWK, Tjong SC (2015) Melt-compounded polylactic acid composite hybrids with hydroxyapatite nanorods and silver nanoparticles: Biodegradation, antibacterial ability, bioactivity and cytotoxicity. RSC Adv 5(88):72288–72299

    Article  CAS  Google Scholar 

  48. Shahid MA, Khan MS (2022) Preparation and characterization of electrospun nanofiber membrane from polyvinyl alcohol loaded with Glycyrrhiza glabra extract. Polym Polym Compos 30:09673911221109422

    CAS  Google Scholar 

  49. Rufatto LC, Gower A, Schwambach J, Moura S (2012) Genus Mikania: chemical composition and phytotherapeutical activity. Rev Brasileira de Farmacogn 22:1384–1403

    Article  CAS  Google Scholar 

  50. Khatun R, Nasrin L, Roy S, Tantry M, Abdur Rahman M (2017) Comparative antimicrobial evaluation of available Mikania species in Bangladesh. Int J Plant Res 7:36–38

    Google Scholar 

  51. Sumantri IB, Wahyuni HS, Mustanti LF (2020) Total phenolic, total flavonoid and phytochemical screening by FTIR spectroscopic of standardized extract of Mikania micrantha leaf. Pharmacognosy J 12(6):1395–1401

    Article  CAS  Google Scholar 

  52. Demétrio AM, Rodrigues AC, de Athayde AE, Biavatti MW, Oliveira FMC, Garcia FL, Lusa MG (2023) Structural, histochemical, and phytochemical characterization of Mikania cordifolia (L. f.) Willd.(Asteraceae) in a coastal dune environment. Flora. 152318

  53. Borkataky M, Bhusan B, Saikia L (2013) Antimicrobial activity and phytochemical screening of some common weeds of asteraceae family. Int J Pharm Sci Rev Res 23(1):116–120

    Google Scholar 

  54. Dev VG, Venugopal J, Sudha S, Deepika G, Ramakrishna S (2009) Dyeing and antimicrobial characteristics of chitosan treated wool fabrics with henna dye. Carbohydr Polym 75(4):646–650

    Article  CAS  Google Scholar 

  55. Mc P-A, Ocotero VM, Balcazar RI, Jiménez FG (2010) Phytochemical and pharmacological studies on Mikania micrantha HBK (Asteraceae). Phyton 79:77

    Article  Google Scholar 

  56. Uddin MN, Mohebbullah M, Islam SM, Uddin MA, Jobaer M (2022) Nigella/honey/garlic/olive oil co-loaded PVA electrospun nanofibers for potential biomedical applications. Prog Biomater 11:431–446

    Article  CAS  Google Scholar 

  57. Uddin MN, Jobaer M, Mahedi SI, Ali A (2022) Protein–based electrospun nanofibers: electrospinning conditions, biomedical applications, prospects, and challenges. J Text Inst 1–26

  58. Marutescu L, Popa M, Saviuc C, Lazar V, Chifiriuc MC (2017) Botanical pesticides with virucidal, bactericidal, and fungicidal activity. New Pesticides Soil Sensors 311–335

  59. Asif M (2012) Antimicrobial potential of Azadirachta indica against pathogenic bacteria and fungi. J Pharmacogn Phytochem 1(4):78–83

    Google Scholar 

  60. Ali A, Islam SM, Mohebbullah M, Uddin MN, Hossain MT, Saha SK, Jamal MSI (2021) Antibacterial electrospun nanomat from nigella/PVA system embedded with silver. J Text Inst 112(4):561–567

    Article  CAS  Google Scholar 

  61. Abidi N, Hequet E, Cabrales L, Gannaway J, Wilkins T, Wells LW (2008) Evaluating cell wall structure and composition of developing cotton fibers using Fourier transform infrared spectroscopy and thermogravimetric analysis. J Appl Polym Sci 107(1):476–486

    Article  CAS  Google Scholar 

  62. Lee HW, Karim MR, Park JH, Bae DG, Oh W, Cheong IW, Yeum JH (2009) Electrospinning and characterisation of poly (vinyl alcohol) blend submicron fibres in aqueous solutions. Polym Polym Compos 17(1):47–54

    CAS  Google Scholar 

  63. Naeimi A, Payandeh M, Ghara AR, Ghadi FE (2020) In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/polyvinyl alcohol incorporating honey and Nepeta dschuparensis. Carbohydr Polym 240:116315

    Article  CAS  Google Scholar 

  64. Pakravan M, Heuzey M-C, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52(21):4813–4824

    Article  CAS  Google Scholar 

  65. Sharma R, Singh N, Gupta A, Tiwari S, Tiwari SK, Dhakate SR (2014) Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. J Mater Chem A 2(39):16669–16677

    Article  CAS  Google Scholar 

  66. Cotesta S, Stahl M (2006) The environment of amide groups in protein–ligand complexes: H-bonds and beyond. J Mol Modeling 12:436–444

    Article  CAS  Google Scholar 

  67. Mayilswamy N, Jaya Prakash N, Kandasubramanian B (2022) Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. International J Polym Mater Polym Biomater 72(6):433–459

    Article  Google Scholar 

Download references

Acknowledgements

Immense gratitude goes to the Department of Textile Engineering, DUET, for providing lab facilities.

Author contributions

CRediT authorship contribution statement. MdNU: Concept generation, experimental, drafted manuscript. MdM: Experimental and proofread. SMI: Experimental, proofread. MdJ: Raw material collection and proofread. SIM: Proofreading and correction. AA: Supervised the work, edited, and proofread.

Funding

The research team did not receive grants or funds from any public, private, or commercial organizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md Nur Uddin, Md. Mohebbullah or Ayub Ali.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, M.N., Mohebbullah, M., Islam, S.M. et al. Preparation and characterization of mikania micrantha (MM)/chitosan (CS) nanocomposites with polyvinyl alcohol (PVA) back layer. J Sol-Gel Sci Technol 108, 84–97 (2023). https://doi.org/10.1007/s10971-023-06182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06182-y

Keywords

Navigation