Skip to main content
Log in

The environment of amide groups in protein–ligand complexes: H-bonds and beyond

  • Original paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A comprehensive structural analysis of interactions involving amide NH and C=O groups in protein–ligand complexes has been performed based on 3,275 published crystal structures (resolution≤2.5 Å). Most of the amide C=O and NH groups at the protein–ligand interface are highly buried within the binding site and involved in H-bonds with corresponding counter-groups. Small percentages of C=O and NH groups are solvated or embedded in hydrophobic environments. In particular, C=O groups show a higher propensity to be solvated or embedded in a hydrophobic environment than NH groups do. A small percentage of carbonyl groups is involved in weak hydrogen bonds with CH. Cases of dipolar interactions, involving carbonyl oxygen and electrophilic carbon atoms, such as amide, amidinium, guanidium groups, are also identified. A higher percentage of NH are in contact with aromatic carbons, interacting either through hydrogen bonds (preferably with the NH group pointing towards a ring carbon atom) or through stacking between amide plane and ring plane. Comprehensive studies such as the present one are thought to be important for future improvements in the molecular design area, in particular for the development of new scoring functions.

Example of dipolar interactions between carbonyl oxygen and amide carbons. a Dipolar (O carbonyl and C amide) interaction within an interaction network (red line H-bonds, blue line dipolar interaction). Protein: PDB 1a4h, [28] N terminal domain of the yeast HSP90 chaperone in complex with geldanamycin; b Dipolar interaction not in an interaction network (red line H-bonds, blue line dipolar interaction). Protein: PDB 1ezq, [29] Factor Xa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Derewenda ZS, Lee L, Derewenda U (1995) J Mol Biol 252:248–262

    Article  PubMed  CAS  Google Scholar 

  2. Fabiola GF (1997) Acta Crystallogr D Biol Crystallogr 53:316–320

    Article  PubMed  CAS  Google Scholar 

  3. Klaholz B, Moras D (2002) Structure (Camb) 10:1197–1204

    Article  CAS  Google Scholar 

  4. Pierce AC, Sandretto KL, Bemis GW (2002) Proteins 49:567–576

    Article  PubMed  CAS  Google Scholar 

  5. Manikandan K, Ramakumar S (2004) Proteins 56:768–781

    Article  PubMed  CAS  Google Scholar 

  6. Sarkhel S, Desiraju GR (2004) Proteins 54:247–259

    Article  PubMed  CAS  Google Scholar 

  7. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  8. Steiner T (2002) Angew Chem Int Ed Engl 41:49–76

    PubMed  Google Scholar 

  9. Steiner T, Koellner G (2001) J Mol Biol 305:535–557

    Article  PubMed  CAS  Google Scholar 

  10. Steiner T (2002) Biophys Chem 95:195–201

    Article  PubMed  CAS  Google Scholar 

  11. Steiner T, Schreurs AM, Kanters JA, Kroon J (1998) Acta Crystallogr D Biol Crystallogr 54 (Pt 1):25–31

    Article  PubMed  CAS  Google Scholar 

  12. Paulini R, Muller K, Diederich F (2005) Angew Chem Int Ed Engl (in press)

  13. Allen FH (2002) Acta Crystallogr B 58:380–388

    Article  PubMed  CAS  Google Scholar 

  14. Hendlich M, Bergner A, Gunther J, Klebe G (2003) J Mol Biol 326:607–620

    Article  PubMed  CAS  Google Scholar 

  15. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  16. Bergner A, Gunther J, Hendlich M, Klebe G, Verdonk M (2001) Biopolymers 61:99–110

    Article  PubMed  CAS  Google Scholar 

  17. OEChem Toolkit (2004) 1.3.2 OpenEye Scientific Software, Inc. (http://www.eyesopen.com)

  18. James CA, Weininger D, Delany J (2001) Daylight Theory Manual. Daylight Chemical Information System, Inc, Los Altos

  19. Stahl M, Bur D, Schneider G (1999) J Comput Chem 20:336–347

    Article  CAS  Google Scholar 

  20. Mitchell JB, Nandi CL, McDonald IK, Thornton JM, Price SL (1994) J Mol Biol 239:315–331

    Article  PubMed  CAS  Google Scholar 

  21. Scheiner S, Kar T, Pattanayak J (2002) J Am Chem Soc 124:13257–13264

    Article  PubMed  CAS  Google Scholar 

  22. Thomas A, Meurisse R, Charloteaux B, Brasseur R (2002) Proteins 48:628–634

    Article  PubMed  CAS  Google Scholar 

  23. Toth G, Watts CR, Murphy RF, Lovas S (2001) Proteins 43:373–381

    Article  PubMed  CAS  Google Scholar 

  24. Weiss MS, Brandl M, Suhnel J, Pal D, Hilgenfeld R (2001) Trends Biochem Sci 26:521–523

    Article  PubMed  CAS  Google Scholar 

  25. Worth GA, Wade RC (1995) J Phys Chem-Us 99:17473–17482

    Article  CAS  Google Scholar 

  26. Malone JF, Murray CM, Charlton MH, Docherty R, Lavery AJ (1997) J Chem Soc Faraday T 93:3429–3436

    Article  CAS  Google Scholar 

  27. Sampson NS, Vrielink A (2003) Acc Chem Res 36:713–722

    Article  PubMed  CAS  Google Scholar 

  28. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Cell 90:65–75

    Article  PubMed  CAS  Google Scholar 

  29. Maignan S, Guilloteau JP, Pouzieux S, Choi-Sledeski YM, Becker MR, Klein SI, Ewing WR, Pauls HW, Spada AP, Mikol V (2000) J Med Chem 43:3226–3232

    Article  PubMed  CAS  Google Scholar 

  30. Dullweber F, Stubbs MT, Musil D, Sturzebecher J, Klebe G (2001) J Mol Biol 313:593–614

    Article  PubMed  CAS  Google Scholar 

  31. Krishnan R, Mochalkin I, Arni R, Tulinsky A (2000) Acta Crystallogr D Biol Crystallogr 56 (Pt 3):294–303

    Article  PubMed  CAS  Google Scholar 

  32. Peterson PE, Smith TJ (1999) Structure Fold Des 7:769–782

    Article  PubMed  CAS  Google Scholar 

  33. Ringhofer S, Kallen J, Dutzler R, Billich A, Visser AJ, Scholz D, Steinhauser O, Schreiber H, Auer M, Kungl AJ (1999) J Mol Biol 286:1147–1159

    Article  PubMed  CAS  Google Scholar 

  34. Maryanoff BE, Qiu X, Padmanabhan KP, Tulinsky A, Almond Jr HR, Andrade-Gordon P, Greco MN, Kauffman JA, Nicolaou KC, Liu A, Bungs PH, Fusetani N (1993) Proc Natl Acad Sci USA 90:8048–8052

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Klaus Mueller for stimulating discussions about non-bonded interactions, Dr. Harald Mauser and Dr. Olivier Roche for their suggestions and all colleagues at Roche Basel for a supportive research atmosphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Cotesta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotesta, S., Stahl, M. The environment of amide groups in protein–ligand complexes: H-bonds and beyond. J Mol Model 12, 436–444 (2006). https://doi.org/10.1007/s00894-005-0067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-005-0067-x

Keywords

Navigation