Skip to main content
Log in

Construction of SnO2/MWCNT nanocomposites as electrode materials for supercapacitor applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Both transition-metal oxide and carbon-based nanocomposites play important roles in the electrochemical properties. The rational design of carbon-based transition-metal oxides could accelerate the electrochemical double layer and Faradaic redox reaction kinetics, which increases the electroactive sites in the supercapacitor applications. Here, we synthesized SnO2/MWCNT nanocomposite through a simple hydrothermal method and used it as electrode material for energy storage applications. The physiochemical characterization was tested by using various techniques such as XRD, FT-IR, FE-SEM, and TEM. The SnO2/MWCNT electrode material delivered a maximum specific capacitance of 255 F/g at 2 A/g and 93% of capacitance retention after 1000 GCD cycles at 10 A g−1 in an alkaline medium.

Graphical Abstract

Fig. Schematic diagram of SnO2/MWCNTs nanocomposite with electrochemical performances. Here, we synthesized SnO2/MWCNT nanocomposite through a simple hydrothermal method and used as electrode material for energy storage application. The SnO2/MWCNT electrode material delivered maximum specific capacitance of 255 F/g at 2 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Çelik D, Meral ME, Waseem M (2022) Investigation and analysis of effective approaches, opportunities, bottlenecks and future potential capabilities for digitalization of energy systems and sustainable development goals. Electr Power Syst Res 211:108251

    Article  Google Scholar 

  2. Sayed K, Abdel-Khalek S, Zakaly HM, Aref M (2022) Energy management and control in multiple storage energy units (battery–supercapacitor) of fuel cell electric vehicles. Materials 15(24):8932

    Article  CAS  Google Scholar 

  3. Krishan O, Suhag S (2020) Grid-independent PV system hybridization with fuel cell-battery/supercapacitor: optimum sizing and comparative techno-economic analysis. Sustain Energy Technol Assess 37:100625

    Google Scholar 

  4. Atchudan R, Pandurangan A, Joo J (2015) Effects of nanofillers on the thermo-mechanical properties and chemical resistivity of epoxy nanocomposites. J Nanosci Nanotechnol 15.6:4255–4267

    Article  Google Scholar 

  5. Shaker M, Riahifar R, Li Y (2020) A review on the superb contribution of carbon and graphene quantum dots to electrochemical capacitors’ performance: synthesis and application. FlatChem 22:100171

    Article  CAS  Google Scholar 

  6. Olabi AG, Abbas Q, Al Makky A, Abdelkareem MA (2022) Supercapacitors as next generation energy storage devices: properties and applications. Energy 248:123617

    Article  CAS  Google Scholar 

  7. Bhojane P (2022) Recent advances and fundamentals of pseudocapacitors: materials, mechanism, and its understanding. J Energy Storage 45:103654

    Article  Google Scholar 

  8. Zhang Q, Zhang W-B, Hei P, Hou Z, Yang T, Long J (2020) CoP nanoprism arrays: pseudocapacitive behavior on the electrode-electrolyte interface and electrochemical application as an anode material for supercapacitors. Appl Surf Sci 527:146682

    Article  CAS  Google Scholar 

  9. Iqbal MF, Ashiq MN, Zhang M (2021) Design of metals sulfides with carbon materials for supercapacitor applications: a review. Energy Technol 9(no. 4):2000987

    Article  CAS  Google Scholar 

  10. Yin B-S, Zhang S-W, Ke K, Wang Z-B (2019) Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer: toward integrated mechanical and capacitive performance. J Alloy Compd 805:1044–1051

    Article  CAS  Google Scholar 

  11. Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F (2019) Carbon nanotube-and graphene-based nanomaterials and applications in high-voltage supercapacitor: a review. Carbon 141:467–480

    Article  CAS  Google Scholar 

  12. Cheng F, Yang X, Zhang S, Lu W (2020) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678

    Article  CAS  Google Scholar 

  13. Veerakumar P, Sangili A, Manavalan S, Thanasekaran P, Lin K-C (2020) Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind Eng Chem Res 59(no. 14):6347–6374

    Article  CAS  Google Scholar 

  14. Wang Y-X, Lim Y-G, Park M-S, Chou S-L, Kim JH, Liu H-K, Dou S-X, Kim Y-J (2014) Ultrafine SnO 2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2(no. 2):529–534

    Article  Google Scholar 

  15. Abou-Elyazed AS, Hassan S, Ashry AG, Hegazy M (2022) Facile, efficient, and cheap electrode based on SnO2/activated carbon waste for supercapacitor and capacitive deionization applications. ACS omega 7(no. 23):19714–19720

    Article  CAS  Google Scholar 

  16. Asaithambi S, Sakthivel P, Karuppaiah M, Balamurugan K, Yuvakkumar R, Thambidurai M, Ravi G (2021) Synthesis and characterization of various transition metals doped SnO2@ MoS2 composites for supercapacitor and photocatalytic applications. J Alloy Compd 853:157060

    Article  CAS  Google Scholar 

  17. Aydın C (2019) Synthesis of SnO2: rGO nanocomposites by the microwave-assisted hydrothermal method and change of the morphology, structural, optical and electrical properties. J Alloy Compd 771:964–972

    Article  Google Scholar 

  18. Zhang Y, Liu M, Sun S, Yang L (2020) The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor. Adv Compos Lett 29:2633366–20909839

    Article  Google Scholar 

  19. Ragupathi H, Jarvin M, Nayak AK, Choe Y (2023) Hydrothermal synthesis of SnO2-rGO nanocomposite from a tea extract for day light driven photocatalyst and supercapacitors N J Chem 4644–4655

  20. Geerthana M, Prabhu S, Harish S, Navaneethan M, Ramesh R, Selvaraj M (2022) Design and preparation of ternary α-Fe2O3/SnO2/rGO nanocomposite as an electrode material for supercapacitor. J Mater Sci: Mater Electron 33(no. 11):8327–8343

    CAS  Google Scholar 

  21. Rani MU, Naresh V, Damodar D, Muduli S, Martha SK, Deshpande AS (2021) In-situ formation of mesoporous SnO2@C nanocomposite electrode for supercapacitors. Electrochim Acta 365:137284

    Article  CAS  Google Scholar 

  22. Prabhu S, Sohila S, Navaneethan D, Harish S, Navaneethan M, Ramesh R (2020) Three dimensional flower-like CuO/Co3O4/r-GO heterostructure for high-performance asymmetric supercapacitors. J Alloy Compd 846:156439

    Article  CAS  Google Scholar 

  23. Kumar GS, Reddy SA, Maseed H, Reddy NR (2020) Facile hydrothermal synthesis of ternary CeO2–SnO2/rGO nanocomposite for supercapacitor application. Funct Mater Lett 13(no. 02):2051005

    Article  CAS  Google Scholar 

  24. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater Res Bull 48(no. 2):923–928

    Article  CAS  Google Scholar 

  25. Duraisamy N, Kandiah K, Rajendran R, Dhanaraj G (2018) Electrochemical and photocatalytic investigation of nickel oxide for energy storage and wastewater treatment. Res Chem Intermed 44:5653–5667

    Article  CAS  Google Scholar 

  26. Al Jahdaly BA, Abu-Rayyan A, Taher MM, Shoueir K (2022) Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS omega 7(no. 27):23673–23684

    Article  CAS  Google Scholar 

  27. Wei Y, Zheng M, Luo W, Dai B, Ren J, Ma M, Li T, Ma Y (2022) All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J Energy Storage 45:103715

    Article  Google Scholar 

  28. Mazloum-Ardakani M, Sabaghian F, Yavari M, Ebady A, Sahraie N (2020) Enhance the performance of iron oxide nanoparticles in supercapacitor applications through internal contact of α-Fe2O3@ CeO2 core-shell. J Alloy Compd 819:152949

    Article  CAS  Google Scholar 

  29. Hong X, Li S, Wang R, Fu J (2019) Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor. J Alloy Compd 775:15–21

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PJ: methodology, writing - original draft, data curation, visualization. GS: data curation, investigation, software, validation. JD and PS, validation. NB, SR and RU: conceptualization, writing - review & editing.

Corresponding author

Correspondence to N. Bhuvaneshwari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanthi, P., Saranya, G., Duraimurugan, J. et al. Construction of SnO2/MWCNT nanocomposites as electrode materials for supercapacitor applications. J Sol-Gel Sci Technol 108, 112–119 (2023). https://doi.org/10.1007/s10971-023-06180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06180-0

Keywords

Navigation