Skip to main content
Log in

Hydrothermally Grown SnO2 and SnO2/rGO Nanocomposite and Its Physio-Electrochemical Studies for Pseudocapacitor Electrode Applications

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this present work, the transition metal oxides of SnO2 and SnO2/rGO nanocomposite were synthesized through a facile hydrothermal method for supercapacitor electrode material applications. The structural, morphological, and elemental analysis of the synthesised samples were characterised by X-ray diffractometer technique (XRD), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray analysis (EDX), and High-resolution transmission electron microscopy (HR-TEM). The morphology of SnO2 was an agglomeration of quasi-spherical-shaped particles with a diameter range of 12–19 nm, as observed using the HR-TEM technique. The optical properties were characterised by UV-vis and Raman spectroscopy. The electrochemical performance of SnO2 and SnO2/rGO nanocomposite electrode was studied in a 3 M KOH electrolyte. A specific capacitance of 346 F g− 1 at a current density of 0.95 A g− 1 for the SnO2/rGO nanocomposite electrode was recorded, which was significantly higher than that of the as-synthesised SnO2 electrode (267 F g− 1). The higher capacitance obtained was due to the synergistic effect of excellent conductivity and a high surface area of rGO within the composite electrode. The exceptional electrochemical properties clearly indicate that the SnO2/rGO nanocomposites are the best for highly efficient pseudocapacitor electrodes in future energy storage device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data that supports the findings of this study is not openly available due to ethical reasons.

References

  1. Liu, Y.; Jiao, Y.; Zhang, Z.; Qu, F.; Umar, A.; Wu, X. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Inter. 2014, 6, 2174–2184.

    Article  CAS  Google Scholar 

  2. Hahn, Y.-B. Metal oxide nanostructures and their applications; American Scientific Publisher: 2010.

  3. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Peng, X.; Peng, L.; Wu, C.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

    Article  CAS  PubMed  Google Scholar 

  5. Conway, B.E. Electrochemical supercapacitors: scientific fundamentals and technological applications; Springer Science & Business Media: 1999.

    Book  Google Scholar 

  6. Zhang, L.L.; Zhao, X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  CAS  PubMed  Google Scholar 

  7. He, Y.; Chen, W.; Gao, C.; Zhou, J.; Li, X.; Xie, E. An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 2013, 5, 8799–8820.

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Geng, J.; Ma, C.; Zhang, D.; Ning, X. Facile and fast synthesis of SnO2 quantum dots for high performance solid-state asymmetric supercapacitor. J. Alloy. Comp. 2020, 825, 153850.

    Article  CAS  Google Scholar 

  9. Senthilkumar, V.; Kadumudi, F.B.; Ho, N.T.; Kim, J.-W.; Park, S.; Bae, J.-S.; Choi, W.M.; Cho, S.; Kim, Y.S. NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications. J. Power Sources 2016, 303, 363–371.

    Article  CAS  ADS  Google Scholar 

  10. He, C.; Xiao, Y.; Dong, H.; Liu, Y.; Zheng, M.; Xiao, K.; Liu, X.; Zhang, H.; Lei, B. Mosaic-structured SnO2@ C porous microspheres for high-performance supercapacitor electrode materials. Electrochim. Acta 2014, 142, 157–166.

    Article  CAS  Google Scholar 

  11. Ding, S.; Luan, D.; Boey, F.Y.C.; Chen, J.S.; Lou, X.W.D. SnO 2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155–7157.

    Article  CAS  Google Scholar 

  12. Selvan, R.K.; Perelshtein, I.; Perkas, N.; Gedanken, A. Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@ C nanocomposites for electrochemical redox supercapacitors. J. Phys. Chem. C 2008, 112, 1825–1830.

    Article  CAS  Google Scholar 

  13. Liang, K.; Cheang, T.Y.; Wen, T.; Xie, X.; Zhou, X.; Zhao, Z.W.; Shen, C.C.; Jiang, N.; Xu, A.W. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries. J. Phys. Chem. C 2016, 120, 3669–3676.

    Article  CAS  Google Scholar 

  14. Zhu, Z.; Wang, S.; Du, J.; Jin, Q.; Zhang, T.; Cheng, F.; Chen, J. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries. Nano Lett. 2014, 14, 153–157.

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Rakhi, R.; Alshareef, H.N. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes. J. Power Sources 2011, 196, 8858–8865.

    Article  CAS  ADS  Google Scholar 

  16. Wu, Z.-S.; Zhou, G.; Yin, L.-C.; Ren, W.; Li, F.; Cheng, H.-M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  CAS  Google Scholar 

  17. Godlaveeti, S.K.; Somala, A.R.; Sana, S.S.; Ouladsmane, M.; Ghfar, A.A.; Nagireddy, R.R. Evaluation of pH effect of tin oxide (SnO2) nanoparticles on photocatalytic degradation, dielectric and supercapacitor applications. J. Clust. Sci. 2022, 33, 1635–1644.

    Article  CAS  Google Scholar 

  18. Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Mothudi, B.; Zorkani, I.; Jorio, A. X-ray diffraction investigations of nanostructured ZnO coated with reduced graphene oxide. In Proceedings of the Journal of Physics: Conference Series, 2019; p. 012011.

  19. Chen, Y.-L.; Hu, Z.-A.; Chang, Y.-Q.; Wang, H.-W.; Zhang, Z.-Y.; Yang, Y.-Y.; Wu, H.-Y.J.T. Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J.Phys.Chem 2011, 115, 2563–2571.

    CAS  Google Scholar 

  20. Ebrahimi Naghani, M.; Neghabi, M.; Zadsar, M.; Abbastabar Ahangar, H.J. Synthesis and characterization of linear/nonlinear optical properties of graphene oxide and reduced graphene oxide-based zinc oxide nanocomposite. Sci.Rep. 2023, 13, 1496.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Khan, S.; Zulfiqar; Khan, T.; Khan, R.; Khan, M.; khattak, S.A.; Khan, G. Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite. J. Mater. Sci.: Mater. Electron. 2019, 30, 10202–10210.

    CAS  Google Scholar 

  22. Tran, T.V.; Alsaiari, M.; Harraz, F.A.; Nabgan, W.; Nguyen, D.T.D.; Nguyen, C.V. Taguchi L9 (34) orthogonal array design for photocatalytic degradation of methylene blue dye by green ZnO particles biosynthesized by Chrysanthemum spp. Flower extract. Water 2023, 15, 2186.

    Article  CAS  Google Scholar 

  23. Sorekine, G.; Anduwan, G.; Waimbo, M.N.; Osora, H.; Velusamy, S.; Kim, S.; Kim, Y.S.; Charles, J. Photocatalytic studies of copper oxide nanostructures for the degradation of methylene blue under visible light. J. Mol. Struct. 2022, 1248, 131487.

    Article  CAS  Google Scholar 

  24. Kadri, L.; Abderrahmane, A.; Bulai, G.; Carlescu, A.; Doroftei, C.; Motrescu, I.; Gurlui, S.; Leontie, L.; Adnane, M. optical and structural analysis of TiO2–SiO2 nanocomposite thin films fabricated via pulsed laser deposition technique. Nanomaterials 2023, 13, 1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamble, V.B.; Umarji, A.M. Defect induced optical bandgap narrowing in undoped SnO2 nanocrystals. AIP Adv. 2013, 3, 082120.

    Article  ADS  Google Scholar 

  26. Scott, J. Raman spectrum of SnO2. J. Chem. Phys. 1970, 53, 852–853.

    Article  CAS  ADS  Google Scholar 

  27. Traylor, J.G.; Smith, H.; Nicklow, R.; Wilkinson, M. Lattice dynamics of rutile. Phys. Rev. B 1971, 3, 3457.

    Article  ADS  Google Scholar 

  28. Peercy, P.; Morosin, B. Pressure and temperature dependences of the Raman-active phonons in Sn O 2. Phys. Rev. B 1973, 7, 2779.

    Article  CAS  ADS  Google Scholar 

  29. Gharbi, O.; Tran, M.T.; Tribollet, B.; Turmine, M.; Vivier, V. Revisiting cyclic voltammetry and electrochemical impedance spectroscopy analysis for capacitance measurements. Electrochim. Acta 2020, 343, 136109.

    Article  CAS  Google Scholar 

  30. Abebe, E.M.; Ujihara, M. Simultaneous electrodeposition of ternary metal oxide nanocomposites for high-efficiency supercapacitor applications. ACS Omega 2022, 7, 17161–17174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, M.; Zhang, L.; Wang, D.; Xiao, C.; Zhang, S. Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors. J. Power Sources 2008, 175, 669–674.

    Article  CAS  ADS  Google Scholar 

  32. Wee, G.; Soh, H.Z.; Cheah, Y.L.; Mhaisalkar, S.G.; Srinivasan, M. Synthesis and electrochemical properties of electrospun V 2 O 5 nanofibers as supercapacitor electrodes. J. Mater. Chem. 2010, 20, 6720–6725.

    Article  CAS  Google Scholar 

  33. Li, H.; Gao, Y.; Wang, C.; Yang, G. A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv. Energy Mater. 2015, 5, 1401767.

    Article  Google Scholar 

  34. Liu, M.; Li, B.; Zhou, H.; Chen, C.; Liu, Y.; Liu, T. Extraordinary rate capability achieved by a 3D “skeleton/skin” carbon aerogel–polyaniline hybrid with vertically aligned pores. Chem. Commun. 2017, 53, 2810–2813.

    Article  CAS  Google Scholar 

  35. Senthilkumar, V.; Kim, Y.S.; Chandrasekaran, S.; Rajagopalan, B.; Kim, E.J.; Chung, J.S. Comparative supercapacitance performance of CuO nanostructures for energy storage device applications. RSC Adv. 2015, 5, 20545–20553.

    Article  CAS  ADS  Google Scholar 

  36. Dang, Y.-Q.; Ren, S.-Z.; Liu, G.; Cai, J.; Zhang, Y.; Qiu, J. Electrochemical and capacitive properties of carbon dots/reduced graphene oxide supercapacitors. Nanomaterials 2016, 6, 212.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Geng, L.; Yan, F.; Dong, C.; An, C. Design and regulation of novel MnFe2O4@ C nanowires as high performance electrode for supercapacitor. Nanomaterials 2019, 9, 777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jebakumar Immanuel Edison, T.N.; Atchudan, R.; Lee, Y.R. Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction. Inter. J. Hydrog. Energy 2019, 44, 2323–2329.

    Article  Google Scholar 

  39. Atchudan, R.; Jebakumar Immanuel Edison, T.N.; Perumal, S.; RanjithKumar, D.; Lee, Y.R. Direct growth of iron oxide nanoparticles filled multi-walled carbon nanotube via chemical vapour deposition method as high-performance supercapacitors. Inter. J. Hydrog. Energy 2019, 44, 2349–2360.

    Article  CAS  Google Scholar 

  40. Saravanakumar, B.; Ravi, G.; Ganesh, V.; Ravichandran, S.; Sakunthala, A.; Yuvakkumar, R.J. Low surface energy and pH effect on SnO2 nanoparticles formation for supercapacitor applications. J. Nanosci. Nanotechnol. 2019, 19, 3429–3436.

    Article  CAS  PubMed  Google Scholar 

  41. Godlaveeti, S.K.; Somala, A.R.; Sana, S.S.; Ouladsmane, M.; Ghfar, A.A.; Nagireddy, R.R.J. Evaluation of pH effect of tin oxide (SnO2) nanoparticles on photocatalytic degradation, dielectric and supercapacitor applications. J. Clust. Sci. 2022, 33, 1635–1644.

    Article  CAS  Google Scholar 

  42. Zhang, Y.; Liu, M.; Sun, S.; Yang, L.J. The preparation and characterization of SnO2/rGO nanocomposites electrode materials for supercapacitor. Adv. Compos. Lett. 2020, 29, 2633366X20909839.

    Article  Google Scholar 

  43. Joshi, N.C.; Rawat, B.; Bisht, H.; Gajraj, V.; Kumar, N.; Chetana, S.; Gururani, P.J. Synthesis and supercapacitive behaviour of SnO2/r-GO nanocomposite. Synth. Met. 2022, 289, 117132.

    Article  CAS  Google Scholar 

  44. Liu, M.; Sun, S.; Yang, L.; Yin, S.J. Ultrathin SnO2 nanorod/reduced graphene oxide nanosheet composites for electrochemical supercapacitor applications with excellent cyclic stability. Int. J. Mater. Res. 2018, 109, 743-750.311

    Article  Google Scholar 

  45. Eedulakanti, S.R.; Gampala, A.K.; Rao, K.V.; Chakra, C.S.; Gedela, V.; Boddula, R.J. Ultrasonication assisted thermal exfoliation of graphene-tin oxide nanocomposite material for supercapacitor. Mater. Sci. Energy Technol. 2019, 2, 372–376.

    Google Scholar 

  46. Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Chandrasekaran, P.; Perumal, S.; Arunachalam, P.; Raja, P.B.; Sethuraman, M.G.; Lee, Y.R. Electrochemically exfoliated graphene sheets as electrode material for aqueous symmetric supercapacitors. Surf. Coat. Technol. 2021, 416, 127150.

    Article  CAS  Google Scholar 

  47. Shinde, P.A.; Lokhande, V.C.; Patil, A.M.; Ji, T.; Lokhande, C.D.J. Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor. Int. J. Hydrog. Energy 2018, 43, 2869–2880.

    Article  CAS  Google Scholar 

  48. Barclay, M.; Firestein, K.; Wang, X.; Motta, N.; Dubal, D.; Ostrikov, K.J. Plasma-activated water for improved intercalation and pseudocapacitance of MnO2 supercapacitor electrodes. Mater. Today Sustain. 2023, 22, 100388.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the postgraduate research committees of PAPUA NEW GUINEA UNIVERSITY OF TECHNONLOGY and THE UNIVERSITY OF GOROKA for their financial assistance.

Funding

No funding was obtained for this study.

Author information

Authors and Affiliations

Authors

Contributions

Experimental, data curation, Formal analysis, and writing-original draft, H.O.; Experimental, Formal analysis, M.W.; Formal analysis, investigation and visualization, D.K. and G.A.; Conceptualization, data curation, visualization, supervision and Writing-review & editing, S.V.

Corresponding author

Correspondence to Senthilkumar Velusamy.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors confirm that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osora, H., Kolkoma, D., Anduwan, G. et al. Hydrothermally Grown SnO2 and SnO2/rGO Nanocomposite and Its Physio-Electrochemical Studies for Pseudocapacitor Electrode Applications. J Clust Sci 35, 891–901 (2024). https://doi.org/10.1007/s10876-023-02517-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-023-02517-5

Keywords

Navigation