Skip to main content
Log in

Preparation of bismuth oxycarbodiimide Bi2O2NCN by a liquid-phase process

  • Original Paper: Sol-gel, hybrids and solution chemistries
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Bismuth oxychalcogenides such as Bi2O2Ch (Ch = S, Se, and Te) have attracted significant attention in the field of materials science because of their unique structure, chemical stability, and high carrier mobility, which make them potential candidates as novel functional materials for various applications. Recently, it was reported that an analogous material of Bi2O2Ch, bismuth oxycarbodiimide (Bi2O2NCN), can be synthesized and used in photoelectrodes. Bi2O2NCN contains the carbodiimide ion (NCN2−), which is a well-known pseudochalcogenide ion, instead of a chalcogenide ion. However, the preparation of metal (oxy)carbodiimides, including Bi2O2NCN, is limited to a few methods such as solid-phase metathesis. In this study, a simple liquid-phase preparation method for Bi2O2NCN was developed. Bi(NO3)3·5H2O, which was used as the Bi precursor, formed insoluble basic bismuth nitrate clusters when reacted with water under neutral pH conditions. Strong acidic conditions were required for the complete dissolution of these clusters. When the Bi precursor and H2NCN were homogeneously dissolved under strongly acidic conditions, and ammonia water was added, Bi2O2NCN was obtained with impurities. In contrast, when basic bismuth nitrate was undissolved, and ammonia water was added in the presence of H2NCN in an inhomogeneous system, basic bismuth nitrate clusters were rapidly converted to Bi2O2NCN with high crystallinity and purity. This method can be potentially applied to the preparation of various metal (oxy)carbodiimides by the liquid-phase process because of its simplicity, low cost, and low energy consumption.

Graphical Abstract

Highlights

  • Bismuth oxycarbodiimide was prepared using bismuth nitrate pentahydrate and cyanamide as precursors.

  • Bismuth oxycarbodiimide, which was obtained from a homogeneous solution in which the Bi precursor was completely dissolved, contained impurities.

  • In an inhomogeneous system that contained dispersions of insoluble basic bismuth nitrate clusters, bismuth oxycarbodiimide was rapidly obtained via basification in the presence of cyanamide.

  • The bismuth oxycarbodiimide prepared via an inhomogeneous liquid-phase process showed high purity and crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu J, Yuan H, Meng M, Chen C, Sun Y, Chen Z, Dang W, Tan C, Liu Y, Yin J, Zhou Y, Huang S, Xu HQ, Cui Y, Hwang HY, Liu Z, Chen Y, Yan B, Peng H (2017) High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol 12:530–534. https://doi.org/10.1038/nnano.2017.43

    Article  CAS  Google Scholar 

  2. Wei Q, Lin C, Li Y, Zhang X, Zhang Q, Shen Q, Cheng Y, Huang W (2018) Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. J Appl Phys 124:055701. https://doi.org/10.1063/1.5040690

    Article  CAS  Google Scholar 

  3. Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y, Liu C, Chen JH, Wang Y, Peng H (2019) Wafer-scale growth of single-crystal 2D semiconductor on perovskite oxides for high-performance transistors. Nano Lett 19:2148–2153. https://doi.org/10.1021/acs.nanolett.9b00381

    Article  CAS  Google Scholar 

  4. Wu J, Liu Y, Tan Z, Tan C, Yin J, Li T, Tu T, Peng H (2017) Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv Mater 29:1704060. https://doi.org/10.1002/adma.201704060

    Article  CAS  Google Scholar 

  5. Luo P, Zhuge F, Wang F, Lian L, Liu K, Zhang J, Zhai T (2019) PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm. ACS Nano 13:9028–9037. https://doi.org/10.1021/acsnano.9b03124

    Article  CAS  Google Scholar 

  6. Tan C, Xu S, Tan Z, Sun L, Wu J, Li T, Peng H (2019) Exploitation of Bi2O2Se/graphene van der Waals heterojunction for creating efficient photodetectors and short-channel field-effect transistors. InfoMat 1:390–395. https://doi.org/10.1002/inf2.12025

    Article  CAS  Google Scholar 

  7. Ruleova P, Drasar C, Lostak P, Li CP, Ballikaya S, Uher C (2010) Thermoelectric properties of Bi2O2Se. Mater Chem Phys 119:299–302. https://doi.org/10.1016/j.matchemphys.2009.08.067

    Article  CAS  Google Scholar 

  8. Luu SDN, Vaqueiro P (2015) Synthesis, characterisation and thermoelectric properties of the oxytelluride Bi2O2Te. J Solid State Chem 226:219–223. https://doi.org/10.1016/j.jssc.2015.02.026

    Article  CAS  Google Scholar 

  9. Tippireddy S, Kumar DSP, Das S, Mallik RC (2021) Oxychalcogenides as thermoelectric materials: an overview. ACS Appl Energy Mater 4:2022–2040. https://doi.org/10.1021/acsaem.0c02770

    Article  CAS  Google Scholar 

  10. Wu M, Zeng XC (2017) Bismuth oxychalcogenides: a new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett 17:6309–6314. https://doi.org/10.1021/acs.nanolett.7b03020

    Article  CAS  Google Scholar 

  11. Ghosh T, Samanta M, Vasdev A, Dolui K, Ghatak J, Das T, Sheet G, Biswas K (2019) Ultrathin free-standing nanosheets of Bi2O2Se: room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett 19:5703–5709. https://doi.org/10.1021/acs.nanolett.9b02312

    Article  CAS  Google Scholar 

  12. Li MQ, Dang LY, Wang GG, Li F, Han M, Wu ZP, Li GZ, Liu Z, Han JC (2020) Bismuth oxychalcogenide nanosheet: facile synthesis, characterization, and photodetector application. Adv Mater Technol 5:2000180. https://doi.org/10.1002/admt.202000180

    Article  CAS  Google Scholar 

  13. Li T, Peng H (2021) 2D Bi2O2Se: an emerging material platform for the next-generation electronic industry. Acc Mater Res 2:842–853. https://doi.org/10.1021/accountsmr.1c00130

    Article  CAS  Google Scholar 

  14. Guo B, Guo Y, Xu L (2022) First-principles insight into the interfacial properties of epitaxial Bi2O2X (X = S, Se, Te) on SrTiO3 substrates. J Phys Chem Solids 163:110601. https://doi.org/10.1016/j.jpcs.2022.110601

    Article  CAS  Google Scholar 

  15. Wang F, Yang S, Wu J, Hu X, Li Y, Li H, Liu X, Luo J, Zhai T (2021) Emerging two-dimensional bismuth oxychalcogenides for electronics and optoelectronics. InfoMat 3:1251–1271. https://doi.org/10.1002/inf2.12215

    Article  CAS  Google Scholar 

  16. Zhang X, Liu Y, Zhang G, Wang Y, Zhang H, Huang F (2015) Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to Superconducting Bi4O4S3. ACS Appl Mater Interfaces 7:4442–4448. https://doi.org/10.1021/am5092159

    Article  CAS  Google Scholar 

  17. Bondarenko EA, Streltsov EA, Mazanik AV, Kulak AI, Grivickas V, Ščajevc P, Skorb EV (2018) Bismuth oxysulfide film electrodes with giant incident photon-to-current conversion efficiency: the dynamics of properties with deposition time. Phys Chem Chem Phys 20:20340–20346. https://doi.org/10.1039/C8CP03225D

    Article  CAS  Google Scholar 

  18. Bondarenko EA, Streltsov EA, Mazanik AV, Kulak AI (2019) Bismuth oxysulfide photoelectrodes with giant incident photon-to-current conversion efficiency: chemical stability in aqueous solutions. ChemElectroChem 6:2474–2481. https://doi.org/10.1002/celc.201900394

    Article  CAS  Google Scholar 

  19. Kim SW, Masui T, Matsushita H, Imanaka N (2010) Enhancement in photoluminescence of Gd2O2CO3:Tb3+ submicron particles by introducing yttrium into the oxycarbonate lattice. J Electrochem Soc 157:J181–J185. https://doi.org/10.1149/1.3355985

    Article  CAS  Google Scholar 

  20. Lian J, Qin H, Liang P, Liu F (2015) Co-precipitation synthesis of Y2O2SO4:Eu3+ nanophosphor and comparison of photoluminescence properties with Y2O3:Eu3+ and Y2O2S:Eu3+ nanophosphors. Solid State Sci 48:147–154. https://doi.org/10.1016/j.solidstatesciences.2015.08.004

    Article  CAS  Google Scholar 

  21. Charkin DO, Akimov GA, Plokhikh IV, Zaloga AN, Borisov AS, Stefanovic SY, Kuznetsov AN, Siidra OI (2020) Bi2O2SO4, a new representative of the grandreefite structure type. J Solid State Chem 282:121124. https://doi.org/10.1016/j.jssc.2019.121124

    Article  CAS  Google Scholar 

  22. Takeda T, Hatta N, Kikkawa S (2006) Gel nitridation preparation and luminescence property of Eu-doped RE2O2CN2 (RE = La and Gd) phosphors. Chem Lett 35:988–989. https://doi.org/10.1246/cl.2006.988

    Article  CAS  Google Scholar 

  23. Ionescu E, Li W, Wiehl L, Mera G, Riedel (2017) Synthesis of nanocrystalline Gd2O2NCN from a versatile singles-source precursor. Z Anorg Allg Chem 643:1681–1691. https://doi.org/10.1002/zaac.201700266

    Article  CAS  Google Scholar 

  24. Zhao W, Liu Y, Liu J, Chen P, Chen IW, Huang F, Lin J (2013) Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. J Mater Chem A 1:7942–7948. https://doi.org/10.1039/C3TA10868F

    Article  CAS  Google Scholar 

  25. Dolabdjian K, Castro C, Meyer HJ (2018) Layered carbodiimides A2M(CN2)3 with tetravalent cations M = Sn, Zr, and Hf. Eur J Inorg Chem 2018:1624–1630. https://doi.org/10.1002/ejic.201800183

    Article  CAS  Google Scholar 

  26. Corkett AJ, Chen Z, Bogdanovski D, Slabon A, Dronskowski R (2019) Band gap tuning in bismuth oxide carbodiimide Bi2O2NCN. Inorg Chem 58:6467–6473. https://doi.org/10.1021/acs.inorgchem.9b00670

    Article  CAS  Google Scholar 

  27. Chen Z, Corkett AJ, de Bruin-Dickason C, Chen J, Rokicińska A, Kuśtrowski P, Dronskowski R, Slabon A (2020) Tailoring the surface properties of Bi2O2NCN by in situ activation for augmented photoelectrochemical water oxidation on WO3 and CuWO4 heterojunction photoanodes. Inorg Chem 59:13589–13597. https://doi.org/10.1021/acs.inorgchem.0c01947

    Article  CAS  Google Scholar 

  28. Okada R, Kawanishi K, Katagiri K, Inumaru K (2019) Ammonolysis-free synthesis of La2O2CN2 by cyanamidation of La(OH)3 using urea, and its photoluminescence properties. Ceram Int 45:9325–9329. https://doi.org/10.1016/j.ceramint.2019.01.262

    Article  CAS  Google Scholar 

  29. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst 44:1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  30. Kubelka P, Munk F (1931) Ein beitrag zur optik der farbanstriche. F Z Technol Phys 12:593–601

    Google Scholar 

  31. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46. https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  32. Nguyen VQ, Mahadadalkar MA, Rabie AM, Shim JJ (2022) Microwave-assisted synthesis of a Z-scheme heterojunction Ag/AgBr@BiOBr/Bi2O3 photocatalyst for efficient organic pollutant degradation under visible light. Environ Sci Nano 9:1724–1737. https://doi.org/10.1039/d1en01166a

    Article  CAS  Google Scholar 

  33. Lazarini F (1981) Thermal dehydration of some basic bismuth nitrates. Thermochim Acta 46:53–55. https://doi.org/10.1016/0040-6031(81)85076-9

    Article  CAS  Google Scholar 

  34. Miersch L, Rüffer T, Schlesinger M, Lang H, Mehring M (2012) Hydrolysis studies on bismuth nitrate: synthesis and crystallization of four novel polynuclear basic bismuth nitrate. Inorg Chem 2012:9376–9384. https://doi.org/10.1021/ic301148p

    Article  CAS  Google Scholar 

  35. Karen VG, Hernández-Gordillo A, Oros-Ruiz S, Rodil SE (2021) Microparticles of α-Bi2O3 obtained from bismuth basic nitrate [Bi6O6(OH)2(NO3)4·2H2O] with photocatalytic properties. Top Catal 64:121–130. https://doi.org/10.1007/s11244-020-01299-8

    Article  CAS  Google Scholar 

  36. Verma SK, Deb MK (2007) Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr-matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Anal Chim Acta 582:382–389. https://doi.org/10.1016/j.aca.2006.09.020

    Article  CAS  Google Scholar 

  37. Hou J, Yang C, Wang Z, Zhou W, Jiao S, Zhu H (2013) In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl Catal B 142–143:504–511. https://doi.org/10.1016/j.apcatb.2013.05.050

    Article  CAS  Google Scholar 

  38. Gelderman K, Lee L, Donne SW (2007) Flat-band potential of a semiconductor: using the Mott–Schottky equation. J Chem Educ 84:685–688. https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  39. Rathore E, Kundu K, Maji K, Das A, Biswas K (2021) Mixed-dimensional heterostructure of CsPbBr3 nanocrystal and Bi2O2Se nanosheet. J Phys Chem C 125:26951–26957. https://doi.org/10.1021/acs.jpcc.1c08319

    Article  CAS  Google Scholar 

  40. Pacquette AL, Hagiwara H, Ishihara T, Gewirth AA (2014) Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite. J Photochem Photobiol A 277:27–36. https://doi.org/10.1016/j.jphotochem.2013.12.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Number JP22H05143). We would like to thank Editage (www.editage.com) for English language editing.

Funding

This study is funded by Japan Society for the Promotion of Science: KAKENHI, Grant Number: JP22H05143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyofumi Katagiri.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumioka, O., Tarutani, N., Katagiri, K. et al. Preparation of bismuth oxycarbodiimide Bi2O2NCN by a liquid-phase process. J Sol-Gel Sci Technol 108, 704–712 (2023). https://doi.org/10.1007/s10971-023-06175-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06175-x

Keywords

Navigation