Skip to main content
Log in

Porous V2O5 ion-storage film as the counter electrode of electrochromic WO3 film: Optimization via Response Surface Methodology (RSM)

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Electrochromic glass, one of the green energy-saving building materials, get more and more attention. The advancement of efficient ion storage film become a hot topic of research. The porous V2O5 ion-storage film was prepared by sol-gel method using polyethylene glycol (PEG) as the pore-former. The peak current of porous V2O5 films heated at 300 °C increased substantially due to the volatility temperature of PEG at 285 °C. The mutual effects of the PEG content, heat treatment temperature, and heat treatment time on the structure and electrochromic properties of porous V2O5 film were investigated by the response surface method (RSM). The results show that the influence extent on ion storage is: heat treatment temperature > PEG content > heat treatment time. Under optimized process parameters of PEG content 6.2 g/100 mL sol, heat treatment time 4 h, heat treatment temperature 310 °C, the porous V2O5 film exhibited excellent ion storage capacity (87.28 mC·cm−2). The electrochromic device (ECD) with optimized porous V2O5 ion-storage film as the counter electrode of electrochromic WO3 film has been successfully assembled, which shows fascinating performance with high optical contrast (87.8% at 550 nm) and fast response time (bleaching/coloring: 4.5/3.7 s).

Graphical Abstract

Highlights

  • The porous V2O5 ion-storage films were prepared by sol-gel method with PEG as pore-former.

  • Response surface methodology (RSM) was applied to optimize the process parameter.

  • The sequence of the effect of the ion storage capacity is heat treatment temperature > PEG content > heat treatment time.

  • Electrochromic devices (ECD) was assembled with porous V2O5 film as the counter electrode of WO3 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou Y, Fan F, Liu YP, Zhao SS, Xu Q, Wang SC, Luo D, Long Y (2021) Unconventional smart windows: Materials, structures and designs. Nano Energy 90. https://doi.org/10.1016/j.nanoen.2021.106613

  2. Chen P, Liang XP, Wang J, Zhang D, Yang SM, Wu WS, Zhang W, Fan XW, Zhang DQ (2017) PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Sol-Gel Sci Technol 81(3):850–858. https://doi.org/10.1007/s10971-016-4235-5

    Article  CAS  Google Scholar 

  3. Gadient J, Livingstone V, Klink D, Grice CR, Lind C (2019) Low temperature synthesis of nanocrystalline V2O5 using the non-hydrolytic sol-gel method. J Sol-Gel Sci Technol 89(3):663–671. https://doi.org/10.1007/s10971-019-04926-3

    Article  CAS  Google Scholar 

  4. Surca AK, Drazic G, Mihelcic M (2020) Spectroelectrochemistry in the investigation of sol-gel electrochromic V2O5films. J Sol-Gel Sci Technol 95(3):587–598. https://doi.org/10.1007/s10971-020-05337-5

    Article  CAS  Google Scholar 

  5. Liu HY, Liang XP, Jiang T, Zhang YY, Liu SW, Wang XZ, Fan XW, Huai XG, Fu YD, Geng ZB, Zhang DQ (2022) Analysis of structural morphological changes from 3DOM V2O5 film to V2O5 nanorods film and its application in electrochromic device. Solar Energy Materials Solar Cells 238. https://doi.org/10.1016/j.solmat.2022.111627

  6. Liu HY, Liang XP, Jiang T, Zhang YY, Liu SW, Wang XZ, Fan XW, Huai XG, Fu YD, Geng ZB, Zhang DQ (2022) High-performance self-doped V4+-V2O5 ion storage films grown in situ using a novel hydrothermal-assisted sol-gel composite method. Electrochimica Acta 404. https://doi.org/10.1016/j.electacta.2021.139784

  7. Shin D, Kim J, Lee CS (2023) Evaluation of V2O5 film-based electrochromic device with dry-deposited ion storage layer. Int J Precis Eng Manuf 24(1):119–128. https://doi.org/10.1007/s12541-022-00731-1

    Article  Google Scholar 

  8. Zhao WX, Wang JY, Tam B, Pei P, Li FZ, Xie A, Cheng W Macroporous Vanadium Oxide Ion Storage Films Enable Fast Switching Speed and High Cycling Stability of Electrochromic Devices. Acs Appl Materials Interfaces:14(26), 30021-30028. https://doi.org/10.1021/acsami.2c05492

  9. Wang SQ, Li SR, Sun Y, Feng XY, Chen CH (2011) Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ Sci 4(8):2854–2857. https://doi.org/10.1039/c1ee01172c

    Article  CAS  Google Scholar 

  10. Liu HJ, Zhu WL, Long DF, Zhu JL, Pezzotti G (2019) Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors. Appl Surf Sci 478:383–392. https://doi.org/10.1016/j.apsusc.2019.01.273

    Article  CAS  Google Scholar 

  11. Hu BB, Cheng H, Huang CL, Aslam MK, Liu LJ, Xu CL, Chen P, Yu DM, Chen CG (2019) The controlled study of surfactants on the morphologies of three-dimensional turbine-like V2O5 for the application of high performance lithium ion storage. Solid State Ionics 342. https://doi.org/10.1016/j.ssi.2019.115059

  12. Xia YF, Zeng YP, Jiang DL (2011) Mechanical and dielectric properties of porous Si3N4 ceramics using PMMA as pore former. Ceram Int 37(8):3775–3779. https://doi.org/10.1016/j.ceramint.2011.06.013

    Article  CAS  Google Scholar 

  13. Ji JC, Li YW, Zhang ZL, Jiang JQ, Lu ZG, Xu P, Xiao SH, Yao JH (2020) PEG intercalated vanadium pentoxide xerogel for enhanced sodium storage. Materials Letters 270. https://doi.org/10.1016/j.matlet.2020.127752

  14. Mohaghegh Z, Ghodsi FE, Mazloom J (2019) Comparative study of electrical parameters and Li-ion storage capacity of PEG modified beta-V2O5:M (M: Mo, Ni) thin films. J Mater Sci-Mater Electron 30(14):13582–13592. https://doi.org/10.1007/s10854-019-01726-x

    Article  CAS  Google Scholar 

  15. Cremonesi A, Bersani D, Lottici PP, Djaoued Y, Bruning R (2006) Synthesis and structural characterization of mesoporous V2O5 thin films for electrochromic applications. Thin Solid Films 515(4):1500–1505. https://doi.org/10.1016/j.tsf.2006.04.029

    Article  CAS  Google Scholar 

  16. Liu DW, Liu YY, Pan AQ, Nagle KP, Seidler GT, Jeong YH, Cao GZ (2011) Enhanced Lithium-Ion Intercalation Properties of V2O5 Xerogel Electrodes with Surface Defects. J Phys Chem C 115(11):4959–4965. https://doi.org/10.1021/jp111847s

    Article  CAS  Google Scholar 

  17. Hao TT, Wang S, Xu HB, Zhang X, Xue JY, Liu SK, Song Y, Li Y, Zhao JP (2021) Stretchable electrochromic devices based on embedded WO3@AgNW Core-Shell nanowire elastic conductors. Chemical Engineering Journal 426. https://doi.org/10.1016/j.cej.2021.130840

  18. Zhang YY, Liang XP, Jiang T, Liu HY, Fu YD, Zhang DQ, Geng ZB (2022) Amorphous/crystalline WO3 dual phase laminated films: Fabrication, characterization and evaluation of their electrochromic performance for smart window applications. Solar Energy Materials and Solar Cells 244. https://doi.org/10.1016/j.solmat.2022.111820

  19. Gok EC, Yildirim MO, Eren E, Oksuz AU (2020) Comparison of Machine Learning Models on Performance of Single- and Dual-Type Electrochromic Devices. Acs Omega 5(36):23257–23267. https://doi.org/10.1021/acsomega.0c03048

    Article  CAS  Google Scholar 

  20. Liu ZF, Jin ZG, Li W, Qiu JJ (2005) Preparation of ZnO porous thin films by sol-gel method using PEG template. Mater Lett 59(28):3620–3625. https://doi.org/10.1016/j.matlet.2005.06.064

    Article  CAS  Google Scholar 

  21. Venkatesan A, Chandar NK, Arjunan S, Marimuthu KN, Kumar RM, Jayavel R (2013) Structural, morphological and optical properties of highly monodispersed PEG capped V2O5 nanoparticles synthesized through a non-aqueous route. Mater Lett 91:228–231. https://doi.org/10.1016/j.matlet.2012.09.117

    Article  CAS  Google Scholar 

  22. Tseng CW, Lin YH, Cheng CH, Lin GR (2018) Depolarized haze of nano-porous AAO film via porosity and aspect control. Optical Mater 75:850–857. https://doi.org/10.1016/j.optmat.2017.11.046

    Article  CAS  Google Scholar 

  23. Kumar NS, Raman MS, Chandrasekaran J, Priya R, Chavali M, Suresh R (2016) Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater Sci Semiconductor Process 41:497–507. https://doi.org/10.1016/j.mssp.2015.08.020

    Article  CAS  Google Scholar 

  24. Chelladurai SJS, Murugan K, Ray AP, Upadhyaya M, Narasimharaj V, Gnanasekaran S (2021) Optimization of process parameters using response surface methodology: A review. International Conference on Newer Trends and Innovations in Mechanical Engineering (ICONTIME) - Materials Science, Electr Network, Oct 15–16 2020. pp 1301–1304. https://doi.org/10.1016/j.matpr.2020.06.466

  25. Inger M, Dobrzynska-Inger A, Rajewski J, Wilk M (2019) Optimization of Ammonia Oxidation Using Response Surface Methodology. Catalysts 9 (3). https://doi.org/10.3390/catal9030249

  26. Pandiyan GK, Prabaharan T (2020) Optimization of machining parameters on AA6351 alloy steel using Response Surface Methodology (RSM). International Conference on NanoTechnology - Ideas, Innovation and Industries, Anna Univ, Syed Ammal Engn Coll, Ramanathapuram, INDIA, Dec 12–14 2019. pp 2686–2689. https://doi.org/10.1016/j.matpr.2020.01.369

  27. Song LF, Yu X, Xu B, Pang R, Zhang ZY (2021) 3D slope reliability analysis based on the intelligent response surface methodology. Bull Eng Geol Environ 80(2):735–749. https://doi.org/10.1007/s10064-020-01940-6

    Article  Google Scholar 

  28. Kim Y, Ha KH, Oh SM, Lee KT (2014) High-Capacity Anode Materials for Sodium-Ion Batteries. Chem-a Eur J 20(38):11980–11992. https://doi.org/10.1002/chem.201402511

    Article  CAS  Google Scholar 

  29. Zhao J, Liu P, Su YZ, Wu DQ, Zhang F (2018) Pore-size-tunable nitrogen-doped polymeric frameworks for high performance sodium ion storage and supercapacitors. J Porous Mater 25(5):1407–1416. https://doi.org/10.1007/s10934-017-0553-4

    Article  CAS  Google Scholar 

  30. Zhou YN, Xue MZ, Fu ZW (2013) Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries. J Power Sources 234:310–332. https://doi.org/10.1016/j.jpowsour.2013.01.183

    Article  CAS  Google Scholar 

  31. Unal O (2016) Optimization of shot peening parameters by response surface methodology. Surf Coat Technol 305:99–109. https://doi.org/10.1016/j.surfcoat.2016.08.004

    Article  CAS  Google Scholar 

  32. Li YW, Yao JH, Uchaker E, Zhang M, Tian JJ, Liu XY, Cao GZ (2013) Sn-Doped V2O5 Film with Enhanced Lithium-Ion Storage Performance. J Phys Chem C 117(45):23507–23514. https://doi.org/10.1021/jp406927m

    Article  CAS  Google Scholar 

  33. Lin TC, Jheng BJ, Yen HM, Huang WC (2022) Thermal Annealing Effects of V2O5 Thin Film as an Ionic Storage Layer for Electrochromic Application. Materials 15 (13). https://doi.org/10.3390/ma15134598

  34. Cholant CM, Westphal TM, Balboni RDC, Moura EA, Gundel A, Flores WH, Pawlicka A, Avellaneda CO (2017) Thin films of V2O5/MoO3 and their applications in electrochromism. J Solid State Electrochem 21(5):1509–1515. https://doi.org/10.1007/s10008-016-3491-1

    Article  CAS  Google Scholar 

  35. Aamir A, Ahmad A, Khan Y, Zia Ur R, Ul Ain N, Shah SK, Mehmood M, Zaman B (2020) Electrodeposited thick coatings of V2O5 on Ni foam as binder free electrodes for supercapacitors. Bull Materials Sci 43 (1). https://doi.org/10.1007/s12034-020-02249-6

  36. Ravi R, Surendren S, Deb B (2021) Studies on All-Solid Electrochromic Devices Fabricated by a Bilayered Assembly of Hydrated Vanadium Pentoxide and PEDOT:PSS Coatings. Surfaces Interfaces 22. https://doi.org/10.1016/j.surfin.2020.100860

  37. Chen XY, Pomerantseva E, Gregorczyk K, Ghodssi R, Rubloff G (2013) Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage. Rsc Adv 3(13):4294–4302. https://doi.org/10.1039/c3ra23031g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Undergraduate Training Program for Innovation and Entrepreneurship of China (Grant No.201910058016), Tianjin Science and Technology Planning Project (20YDTPJC00800 and 22YFZCSN00010) and Tianjin SYP Engineering Glass Co., Ltd. We would also like to thank the Analytical & Testing Center of Tiangong University for structured illumination microscopy work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liang.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Liang, X., Yan, S. et al. Porous V2O5 ion-storage film as the counter electrode of electrochromic WO3 film: Optimization via Response Surface Methodology (RSM). J Sol-Gel Sci Technol 107, 548–559 (2023). https://doi.org/10.1007/s10971-023-06174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06174-y

Keywords

Navigation