Skip to main content
Log in

Visible light photoactivity of the Cu doped TiO2/Yb2O3 nanocomposite for degradation of acid red 88 solution

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The highly efficient Cu doped TiO2/Yb2O3 (CTYO) photoactive nanocomposite were prepared by simple and straight sol-gel method. The structural, morphological and other properties of the prepared nanocomposite were studied. X-ray diffraction analysis revealed the existence of both Yb2O3 and TiO2 phases in crystalline structure of CTYO. UV-Vis diffuse reflectance spectroscopy confirmed the great potential of the prepared samples as the efficient visible light photocatalyst. The photoactivity of the prepared samples were evaluated using degradation of acid red 88 solution (AR88) under visible light irradiation. The 92.5% of the AR88 in solution was degraded after the 180 min illumination over CTYO photocatalyst. The degradation efficiency was studied under different pH of AR88 solution and amounts of the loaded photocatalyst. The stability and recyclability of the prepared photocatalyst were studied under 8 reaction cycles which revealed the superiority of CTYO as the visible light photocatalyst.

Graphical Abstract

Highlights

  • Cu doped TiO2/Yb2O3 nanocomposite was prepared using simple Sol-Gel method.

  • Prepared nanocomposite has an excellent visible light photocatalytic activity.

  • Prepared nanocomposite has a superior stability under successive reaction cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem Rev 114(19):9919–9986. https://doi.org/10.1021/cr5001892

    Article  CAS  Google Scholar 

  2. Zulfiqar M, Sufian S, Bahadar A, Lashari N, Rabat NE, Mansor N (2021) Surface-fluorination of TiO2 photocatalysts for remediation of water pollution: A review. J Clean Prod 317:128354. https://doi.org/10.1016/j.jclepro.2021.128354

    Article  CAS  Google Scholar 

  3. Rahbar M, Mehrzad M, Behpour M, Mohammadi-Aghdam S, Ashrafi M (2019) S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst. Nanotechnology 30(50):505702. https://doi.org/10.1088/1361-6528/ab40dc

    Article  CAS  Google Scholar 

  4. Zhang Y, Sun A, Xiong M, Macharia DK, Liu J, Chen Z, Li M, Zhang L (2021) TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV–vis photoresponsive for efficiently degrading various pollutants. Chem Eng J 415:129019. https://doi.org/10.1016/j.cej.2021.129019

    Article  CAS  Google Scholar 

  5. Fawzi Suleiman Khasawneh O, Palaniandy P (2021) Removal of organic pollutants from water by Fe2O3/TiO2 based photocatalytic degradation: A review. Environ Technol Innov 21:101230. https://doi.org/10.1016/j.eti.2020.101230

    Article  CAS  Google Scholar 

  6. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  7. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind Eng Chem Res 52(10):3581–3599. https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  8. Rahbar M, Behpour M (2022) Fluorite type La2Pb2O7 nanoparticles coated onto AgO as enhanced performance cathode active material for alkaline primary cell. J Power Sources 521:230887

    Article  CAS  Google Scholar 

  9. Delbari SA, Ghadimi LS, Hadi R, Farhoudian S, Nedaei M, Babapoor A, Namini AS, Van Le Q, Shokouhimehr M, Asl MS (2021) Transition metal oxide-based electrode materials for flexible supercapacitors: A review. J Alloy Compd 857:158281

    Article  CAS  Google Scholar 

  10. Salih EY, Sabri MFM, Eisa MH, Sulaiman K, Ramizy A, Hussein MZ, Said SM (2021) Mesoporous ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide as an effective anode material for visible light photodetector. Mater Sci Semiconduct Proc 121:105370

    Article  CAS  Google Scholar 

  11. Teh CM, Mohamed AR (2011) Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J Alloy Compd 509(5):1648–1660

    Article  CAS  Google Scholar 

  12. Štengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114(1):217–226

    Article  Google Scholar 

  13. Janani FZ, Khiar H, Taoufik N, Elhalil A, Sadiq M, Puga AV, Mansouri S, Barka N (2021) ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides as a promising photocatalyst for methyl orange photocatalytic degradation. Mater Today Chem 21:100495. https://doi.org/10.1016/j.mtchem.2021.100495

    Article  CAS  Google Scholar 

  14. Vignesh S, Suganthi S, Palanivel B, Ali AM, Shkir M, Algarni H, Sreedevi G (2022) Design a novel g-C3N4 based Ce2O3/CuO ternary photocatalysts for superior photo-degradation performance of organic mixed pollutants: Insights of Z-scheme charge transfer mechanism. J Phys Chem Solids 162:110514. https://doi.org/10.1016/j.jpcs.2021.110514

    Article  CAS  Google Scholar 

  15. Mohamed RM, Ismail AA, Kadi MW, Alresheedi AS, Mkhalid IA (2021) Photocatalytic performance mesoporous Nd2O3 modified ZnO nanoparticles with enhanced degradation of tetracycline. Catal Today 380:259–267. https://doi.org/10.1016/j.cattod.2020.11.002

    Article  CAS  Google Scholar 

  16. Basaleh A, Ismail AA, Mohamed RM (2022) Novel visible light heterojunction CdS/Gd2O3 nanocomposites photocatalysts for Cr(VI) photoreduction. J Alloy Compd 927:166988. https://doi.org/10.1016/j.jallcom.2022.166988

    Article  CAS  Google Scholar 

  17. Munawar T, Mukhtar F, Nadeem MS, Riaz M, Naveed ur Rahman M, Mahmood K, Hasan M, Arshad MI, Hussain F, Hussain A, Iqbal F (2020) Novel photocatalyst and antibacterial agent; direct dual Z-scheme ZnO–CeO2-Yb2O3 heterostructured nanocomposite. Solid State Sci 109:106446. https://doi.org/10.1016/j.solidstatesciences.2020.106446

    Article  CAS  Google Scholar 

  18. Modwi A, Aissa B, Taha KK, Khezami L, El Ghoul J, Al-Ayed AS, Bououdina M (2021) Fabrication of (Y2O3) n–ZnO nanocomposites by high-energy milling as potential photocatalysts. J Mater Sci: Mater Electron 32(3):3415–3430

    CAS  Google Scholar 

  19. Liyanaarachchi H, Thambiliyagodage C, Liyanaarachchi C, Samarakoon U (2023) Efficient photocatalysis of Cu doped TiO2/g-C3N4 for the photodegradation of methylene blue. Arab J Chem 16(6):104749. https://doi.org/10.1016/j.arabjc.2023.104749

    Article  CAS  Google Scholar 

  20. Yuzer B, Aydın MI, Con AH, Inan H, Can S, Selcuk H, Kadmi Y (2022) Photocatalytic, self-cleaning and antibacterial properties of Cu(II) doped TiO2. J Environ Manag 302:114023. https://doi.org/10.1016/j.jenvman.2021.114023

    Article  CAS  Google Scholar 

  21. Shirazi P, Rahbar M, Behpour M, Ashrafi M (2020) La 2 MnTiO 6 double perovskite nanostructures as highly efficient visible light photocatalysts. N J Chem 44(1):231–238

    Article  CAS  Google Scholar 

  22. Gnanasekaran L, Rajendran S, Priya AK, Durgalakshmi D, Vo D-VN, Cornejo-Ponce L, Gracia F, Soto-Moscoso M (2021) Photocatalytic degradation of 2,4-dichlorophenol using bio-green assisted TiO2–CeO2 nanocomposite system. Environ Res 195:110852. https://doi.org/10.1016/j.envres.2021.110852

    Article  CAS  Google Scholar 

  23. Colón G, Maicu M, Hidalgo MC, Navío JA (2006) Cu-doped TiO2 systems with improved photocatalytic activity. Appl Catal B: Environ 67(1):41–51. https://doi.org/10.1016/j.apcatb.2006.03.019

    Article  CAS  Google Scholar 

  24. Eskandarloo H, Badiei A, Behnajady MA (2014) TiO2/CeO2 hybrid photocatalyst with enhanced photocatalytic activity: optimization of synthesis variables. Ind Eng Chem Res 53(19):7847–7855

    Article  CAS  Google Scholar 

  25. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA (2008) Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity. Environ Sci Technol 42(13):4952–4957

    Article  CAS  Google Scholar 

  26. Anandan S, Kumar PS, Pugazhenthiran N, Madhavan J, Maruthamuthu P (2008) Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Sol Energy Mater Sol Cells 92(8):929–937

    Article  CAS  Google Scholar 

  27. Kumar PSS, Sivakumar R, Anandan S, Madhavan J, Maruthamuthu P, Ashokkumar M (2008) Photocatalytic degradation of Acid Red 88 using Au–TiO2 nanoparticles in aqueous solutions. Water Res 42(19):4878–4884

    Article  CAS  Google Scholar 

  28. Kartal ÖE, Erol M, Oǧuz H (2001) Photocatalytic destruction of phenol by TiO2powders. Chem Eng Technol: Ind Chem‐Plant Equip‐Process Eng‐Biotechnol 24(6):645–649

    Article  CAS  Google Scholar 

  29. Van Doorslaer X, Demeestere K, Heynderickx PM, Van Langenhove H, Dewulf J (2011) UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: reaction kinetics and role of adsorption. Appl Catal B: Environ 101(3-4):540–547

    Article  Google Scholar 

  30. Myilsamy M, Mahalakshmi M, Subha N, Rajabhuvaneswari A, Murugesan V (2016) Visible light responsive mesoporous graphene–Eu2O3/TiO2 nanocomposites for the efficient photocatalytic degradation of 4-chlorophenol. RSC Adv 6(41):35024–35035. https://doi.org/10.1039/C5RA27541E

    Article  CAS  Google Scholar 

  31. Vignesh S, Chandrasekaran S, Srinivasan M, Anbarasan R, Perumalsamy R, Arumugam E, Shkir M, Algarni H, AlFaify S (2022) TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study. Chemosphere 288:132611. https://doi.org/10.1016/j.chemosphere.2021.132611

    Article  CAS  Google Scholar 

  32. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6(1):31641. https://doi.org/10.1038/srep31641

    Article  CAS  Google Scholar 

  33. Munawar T, Yasmeen S, Hasan M, Mahmood K, Hussain A, Ali A, Arshad MI, Iqbal F (2020) Novel tri-phase heterostructured ZnO–Yb2O3–Pr2O3 nanocomposite; structural, optical, photocatalytic and antibacterial studies. Ceram Int 46(8, Part A):11101–11114. https://doi.org/10.1016/j.ceramint.2020.01.130

    Article  CAS  Google Scholar 

  34. Munawar T, Mukhtar F, Nadeem MS, Mahmood K, Hussain A, Ali A, Arshad MI, Ajaz un Nabi M, Iqbal F (2020) Structural, optical, electrical, and morphological studies of rGO anchored direct dual-Z-scheme ZnO-Sm2O3–Y2O3 heterostructured nanocomposite: An efficient photocatalyst under sunlight. Solid State Sci 106:106307. https://doi.org/10.1016/j.solidstatesciences.2020.106307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support of this work by the Payame Noor University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvin Mohammadi-Aghdam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi-Aghdam, S., Mizwari, Z.M. & Khojasteh, H. Visible light photoactivity of the Cu doped TiO2/Yb2O3 nanocomposite for degradation of acid red 88 solution. J Sol-Gel Sci Technol 108, 127–135 (2023). https://doi.org/10.1007/s10971-023-06173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06173-z

Keywords

Navigation