Skip to main content
Log in

Annealing edge sites of porous SnO2 nanoplates for selective NO2 sensing: a combined experimental and theoretical study

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The multiple edge sites on 2D nanosheets or nanoplates usually supply more active sites which result in the enhancement of gas sensing performance. Manufacturing porous structure, with high density of edge sites coupled under the irradiation of UV light, have great potential in NO2 gas selectivity at room temperature. In this work, annealing engineered active edge sites of 2D SnO2 porous nanoplates were synthesized by a facile hydrothermal route. SnO2-600 2D semicircle nanoplates with small holes on its edge are attribute to their high sensitivity and selectivity to NO2 gas under the excitation of 365 nm UV light at room temperature. Density functional theory calculations show that the adsorption energy of −0.74 eV and the obvious variation in band gap before and after the interaction of NO2 on SnO2 (110). These results indicate high performance of gas sensitivity of SnO2 to NO2. The present studies provide useful strategies for the development of high selective room temperature SnO2-based NO2 sensors.

Graphical Abstract

Highlights

  • The SnO2 porous nanoplates with multiple active edge sites were successfully synthesized by a feasible hydrothermal method via adjusting annealing temperature.

  • The fabricated SnO2-600 sensor displayed excellent NO2-sensing performance with fast response and recovery properties with the aid of UV excitation at room temperature.

  • The gas sensing mechanism and gas selectivity mechanism are investigated by density functional theory calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kong Y, Li Y, Cui X, Su L, Ma D, Lai T et al. (2022) SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: a review. Nano Mater Sci 4(4):339–350

    Article  CAS  Google Scholar 

  2. Wang Z, Gao S, Fei T, Liu S, Zhang T (2019) Construction of ZnO/SnO2 heterostructure on reduced graphene oxide for enhanced nitrogen dioxide sensitive performances at room temperature. ACS Sens 4(8):2048–2057

    Article  CAS  Google Scholar 

  3. Lee J, Jung Y, Sung S-H, Lee G, Kim J, Seong J et al. (2021) High-performance gas sensor array for indoor air quality monitoring: the role of Au nanoparticles on WO3, SnO2, and NiO-based gas sensors. J Mater Chem A 9(2):1159–1167

    Article  CAS  Google Scholar 

  4. Hung CM, Vuong VA, Duy NV, An DV, Hieu NV, Kashif M et al. (2020) Controlled growth of vertically oriented trilayer MoS2 nanoflakes for room‐temperature NO2 gas sensor applications. Phys status solidi (a) 217(12):2000004

    Article  CAS  Google Scholar 

  5. Bai X, Lv H, Liu Z, Chen J, Wang J, Sun B et al. (2021) Thin-layered MoS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J Hazard Mater 416:125830

    Article  CAS  Google Scholar 

  6. Priye A, Ball CS, Meagher RJ (2018) Colorimetric-luminance readout for quantitative analysis of fluorescence signals with a smartphone CMOS sensor. Anal Chem 90(21):12385–12389

    Article  CAS  Google Scholar 

  7. Wang Z, Xie Z, Bian L, Li W, Zhou X, Wu X et al. (2018) Enhanced NO2 sensing property of ZnO by Ga doping and H2 activation. Phys Status Solidi (A) 215(11):1700861

    Article  Google Scholar 

  8. Liu B, Luo Y, Li K, Wang H, Gao L, Duan G (2019) Room‐temperature NO2 gas sensing with ultra‐sensitivity activated by ultraviolet light based on SnO2 monolayer array film. Adv Mater Interfaces 6(12):1900376

    Article  Google Scholar 

  9. Gasso S, Sohal MK, Mahajan A (2022) MXene modulated SnO2 gas sensor for ultra-responsive room-temperature detection of NO2. Sens Actuators B-Chem 357:131427

    Article  CAS  Google Scholar 

  10. Park KR, Cho HB, Lee J, Song Y, Kim WB, Choa YH (2020) Design of highly porous SnO2-CuO nanotubes for enhancing H2S gas sensor performance. Sens Actuators B-Chem 302:127179

    Article  CAS  Google Scholar 

  11. Maeng S, Kim SW, Lee DH, Moon SE, Kim KC, Maiti A (2014) SnO2 nanoslab as NO2 sensor: identification of the NO2 sensing mechanism on a SnO2 surface. ACS Appl Mater Interfaces 6(1):357–363

    Article  CAS  Google Scholar 

  12. Katoch A, Ul Abideen Z, Kim HW, Kim SS (2016) Grain-size-tuned highly H2-selective chemiresistive sensors based on ZnO-SnO2 composite nanofibers. ACS Appl Mater Interfaces 8(4):2486–2494

    Article  CAS  Google Scholar 

  13. Deepa S, Prasanna Kumari K, Thomas B (2017) Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram Int 43(18):17128–17141

    Article  CAS  Google Scholar 

  14. Zhong X, Shen Y, Zhao S, Li T, Lu R, Yin Y et al. (2019) Effect of pore structure of the metakaolin-based porous substrate on the growth of SnO2 nanowires and their H2S sensing properties. Vacuum 167:118–128

    Article  CAS  Google Scholar 

  15. Han Y, Ma Y, Liu Y, Xu S, Chen X, Zeng M et al. (2019) Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Appl Surf Sci 493:613–619

    Article  CAS  Google Scholar 

  16. Wu FY, Tseng WJ (2021) Effect of heat treatment on surface structure and gas sensing of electrospun ZnO‐SnO2 composite nanofibers. Int J Appl Ceram Technol 18(3):653–660

    Article  CAS  Google Scholar 

  17. Wang P, Wang SZ, Han Q, Zou DQ, Zhao WK, Wang XD et al. (2020) Construction of hierarchical α‐Fe2O3/SnO2 nanoball arrays with superior acetone sensing performance. Adv Mater Interfaces 8(5):2001831

    Article  Google Scholar 

  18. Li W, Xing K, Liu P, Chuang C, Lu YR, Chan TS et al. (2021) Ultrasensitive NO2 gas sensors based on layered α‐MoO3 nanoribbons. Adv Mater Technol 7(4):2100579

    Article  Google Scholar 

  19. Dabbabi S, Nasr TB, Madouri A, Cavanna A, Garcia‐Loureiro A, Kamoun N (2019) Fabrication and characterization of sensitive room temperature NO2 gas sensor based on ZnSnO3 thin film. Phys Status Solidi (A) 216(16):1900205

    Article  Google Scholar 

  20. Niu G, Zhao C, Wang F (2021) Scalable synthesis of SnO2 nanosheet arrays on chips for ultralow concentration NO2 detection*. In: Proc IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); pp 820-823

  21. Ohgi H, Maeda T, Hosono E, Fujihara S, Imai H (2005) Evolution of nanoscale SnO2 grains, flakes, and plates into versatile particles and films through crystal growth in aqueous solutions. Cryst Growth Des 5(3):1079–1083

    Article  CAS  Google Scholar 

  22. Yang R, Gu YG, Li YQ, Zheng J, Li XG (2010) Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Mater 58(3):866–874

    Article  CAS  Google Scholar 

  23. Morjan IP, Dutu E, Fleaca CT, Dumitrache F, Morjan I, Mihailescu N et al. (2022) Effect of annealing on the structural, optical and electrical properties of (F, Zn) double doped SnO2 nanoparticles obtained by the laser pyrolysis method. Mater Sci Semicond Process 142:106511

    Article  CAS  Google Scholar 

  24. Liu N, Li Y, Li Y, Cao L, Nan N, Li C et al. (2021) Tunable NH4F-assisted synthesis of 3D porous In2O3 microcubes for outstanding NO2 gas-sensing performance: fast equilibrium at high temperature and resistant to humidity at room temperature. ACS Appl Mater Interfaces 13(12):14355–14364

    Article  CAS  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  26. Kresse G, Furthmüller J(1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  27. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  28. Tao J, Perdew JP, Tang H, Shahi C (2018) Origin of the size-dependence of the equilibrium van der Waals binding between nanostructures. J Chem Phys 148(7):074110

    Article  Google Scholar 

  29. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  30. Cai X, Zhang P, Wei S-H (2019) Revisit of the band gaps of rutile SnO2 and TiO2: a first-principles study. J Semicond 40(9):092101

    Article  CAS  Google Scholar 

  31. Cheng MQ, Chen Q, Yang K, Huang WQ, Hu WY, Huang GF (2019) Penta-graphene as a potential gas sensor for NOx detection. Nanoscale Res Lett 14(1):306

    Article  CAS  Google Scholar 

  32. Goniakowski J, Gillan MJ (1996) The adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations. Surf Sci 350(1–3):145–158

    Article  CAS  Google Scholar 

  33. Ducere JM, Hemeryck A, Esteve A, Rouhani MD, Landa G, Menini P et al. (2012) A computational chemist approach to gas sensors: modeling the response of SnO2 to CO, O2, and H2O gases. J Comput Chem 33(3):247–258

    Article  CAS  Google Scholar 

  34. Xue YB, Tang ZA (2009) Density functional study of the interaction of CO with undoped and Pd doped SnO2(110) surface. Sens Actuators B: Chem 138(1):108–112

    Article  CAS  Google Scholar 

  35. Li J, Zheng M, Yang M, Zhang X, Cheng X, Zhou X et al. (2023) Three-in-one Ni doped porous SnO2 nanorods sensor: controllable oxygen vacancies content, surface site activation and low power consumption for highly selective NO2 monitoring. Sens Actuators B: Chem 382(1):133550

    Article  CAS  Google Scholar 

  36. Yin X-T, Dastan D, Gity F, Li J, Shi Z, Alharbi ND et al. (2023) Gas sensing selectivity of SnO2-xNiO sensors for homogeneous gases and its selectivity mechanism: experimental and theoretical studies. Sens Actuators A: Phys 354(1):114273

    Article  CAS  Google Scholar 

  37. Li J, Yang M, Cheng X, Zhang X, Guo C, Xu Y et al. (2021) Fast detection of NO2 by porous SnO2 nanotoast sensor at low temperature. J Hazard Mater 419:126414

    Article  CAS  Google Scholar 

  38. Leangtanom P, Chanlek N, Yordsri V, Wisitsoraat A, Tuantranont A, Jaruwongrungsee K et al. (2022) Enhanced NO2‐sensing properties of Cu‐loaded SnO2 nanoparticles synthesized via precipitation and impregnation methods. Phys Status Solidi (A) 219(20):2100797

    Article  CAS  Google Scholar 

  39. Hu C, Yu L, Li S, Yin M, Du H, Li H (2022) Sacrificial template triggered to synthesize hollow nanosheet-assembled Co3O4 microtubes for fast triethylamine detection. Sens Actuators B: Chem 355(15):131246

    Article  CAS  Google Scholar 

  40. Yan W, Zhu K, Cui Y, Li Y, Dai T, Cui S et al. (2021) NO2 detection and redox capacitance reaction of Ag doped SnO2/rGO aerogel at room temperature. J Alloy Compd 886:161287

    Article  CAS  Google Scholar 

  41. Zhang Z, Gao Z, Fang R, Li H, He W, Du C (2020) UV-assisted room temperature NO2 sensor using monolayer graphene decorated with SnO2 nanoparticles. Ceram Int 46(2):2255–2260

    Article  CAS  Google Scholar 

  42. Wang Z, Zhao C, Han T, Zhang Y, Liu S, Fei T et al. (2017) High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens Actuators B: Chem 242:269–279

    Article  CAS  Google Scholar 

  43. Li W, He L, Bai X, Liu L, Ikram M, Lv H et al. (2020) Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg Chem Front 7(10):2031–2042

    Article  CAS  Google Scholar 

  44. Mohanta D, Ahmaruzzaman M (2021) Novel Ag-SnO2-βC3N4 ternary nanocomposite based gas sensor for enhanced low-concentration NO2 sensing at room temperature. Sens Actuators B: Chem 326:128910

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (62171359), Shaanxi Provincial Education Department Serves Local Scientific Research Program (19JC020), industrial research project of Science and Technology Department of Shaanxi Province (2021GY-227).

Author information

Authors and Affiliations

Authors

Contributions

DT: Methodology, Writing—original draft, Writing—review & editing. YL: Supervision, Conceptualization. XY: conducting the DFT calculations. CY: Resources. LS: Resources. YM: Resources. DH: Supervision, Conceptualization. JY: Resources.

Corresponding authors

Correspondence to Hongbo Du or Lingmin Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Li, S., Chen, Y. et al. Annealing edge sites of porous SnO2 nanoplates for selective NO2 sensing: a combined experimental and theoretical study. J Sol-Gel Sci Technol 107, 608–619 (2023). https://doi.org/10.1007/s10971-023-06144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06144-4

Keywords

Navigation