Skip to main content
Log in

Methods and strategies to decrease the dielectric properties of polyimide films: a review

  • Review Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Polyimide films with low dielectric properties and high thermal stability have been widely used in advanced integrate circuit industry. Herein, this article briefly summarized the recent achievements in reducing the dielectric properties of polyimide films via a variety of methods or strategies, and the mechanical properties, thermal stability or optical properties were also summarized. Achieving the synergy of low dielectric properties, high thermal stability and superior mechanical properties is the research directions and priories of future development for polyimide films.

Graphical Abstract

Highlights

  • Reducing the molecular polarizability and enhancing the fractional free volume are the main strategies to decrease k of PI films.

  • Introducing porous structures is the most efficient approach to decrease the k of PI films.

  • Achieving the synergy of low k, high thermal stability and superior mechanical properties are the research priories for PI films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

PI:

Polyimide

PAA:

Polyamide acid

k:

Dielectric constant

DF:

Dielectric loss

TG:

Glass transition temperature

FFV:

Fractional free volume

T450:

Transmittance at 450 nm

CET:

Coefficient of linear thermal expansion

References

  1. Liaw DJ, Wang KL, Huang YC, Lee KR, Lai JY, Ha CS (2012) Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 37:907–974

    Article  CAS  Google Scholar 

  2. Ni H, Liu J, Wang Z, Yang S (2015) A review on colorless and optically transparent polyimide films: chemistry, process and engineering applications. J Ind Eng Chem 28:16–27

    Article  CAS  Google Scholar 

  3. Li Y, Sun G, Zhou Y, Liu G, Wang J, Han S (2022) Progress in low dielectric polyimide film—a review. Prog Org Coat 172:107103

    Article  CAS  Google Scholar 

  4. Chisca S, Musteata VE, Sava I, Bruma M (2011) Dielectric behavior of some aromatic polyimide films. Eur Polym J 47:1186–1197

    Article  CAS  Google Scholar 

  5. Hannay JH (1983) The Clausius-Mossotti equation: an alternative derivation. Eur J Phys 4:141

    Article  CAS  Google Scholar 

  6. Damaceanu MD, Constantin CP, Nicolescu A, Bruma M, Belomoina N, Begunov RS (2014) Highly transparent and hydrophobic fluorinated polyimide films with ortho-kink structure. Eur Polym J 50:200–213

    Article  CAS  Google Scholar 

  7. Li YQ, Chu YY, Fang RC, Ding SJ, Wang YL, Shen YZ, Zheng AM (2012) Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups. Polymer 53:229–240

    Article  CAS  Google Scholar 

  8. Abouzari-Lotf E, Shockravi A, Javadi A (2011) Heat-resistant and soluble fluorinated poly(amide imide)s based on non-coplanar ortho-linked diimide-dicarboxylic acid. Polym Degrad Stabil 96:1022–1028

    Article  CAS  Google Scholar 

  9. Toshihiko M (2001) Colorless full-alicyclic polyimides with low dielectric constant. J Photopolym Sci Tec 14:725–730

    Article  Google Scholar 

  10. Ding MX (2017) The relationship between polyimide chemical structure and properties and materials. Science Press, Beijing

  11. Yang S-Y (2018) Advanced Polyimide Films: synthesis, sharacterization, and Application. Elsevier, London, UK

  12. Liaw DJ, Liaw BY, Li LJ, Sillion B, Mercier R, Thiria R, Sekiguchi H (1998) Synthesis and characterization of new soluble polyimides from 3, 3 ‘, 4, 4 ‘-benzhydrol tetracarboxylic dianhydride and various diamines. Chem Mater 10:734–739

    Article  CAS  Google Scholar 

  13. Jeon J-Y, Tak T-M (1996) Synthesis and characterization of polyimide derivatives prepared by different one-step methods. J Appl Polym Sci 61:371–382

    Article  CAS  Google Scholar 

  14. Shahram M-A, Naeemeh B-L, Ahmad A (2006) Comparison of one-step and two-step methods of polyimidization and substitution effect in the synthesis of new poly (ester-imide) s with bulky pendent group. Polym Degrad Stabil 91:2622–2631

    Article  Google Scholar 

  15. Inoue H, Sasaki Y, Ogawa T (1996) Comparison of one‐pot and two‐step polymerization of polyimide from BPDA/ODA. J Appl Polym Sci 60:123–131

    Article  CAS  Google Scholar 

  16. Chen W, Chen W, Zhang B, Yang S, Liu C-Y (2017) Thermal imidization process of polyimide film: interplay between solvent evaporation and imidization. Polymer 109:205–215

    Article  CAS  Google Scholar 

  17. Wang Z, Chen X, Yang H, Zhao J, Yang S-Y (2019) The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chin J Polym Sci 37:268–278

    Article  CAS  Google Scholar 

  18. Wang Y, Yang Y, Jia Z, Qin J, Gu Y (2013) Effect of chemical structure and preparation process on the aggregation structure and properties of polyimide film. J Appl Polym Sci 127:4581–4587

    Article  CAS  Google Scholar 

  19. Watanabe Y, Shibasaki Y, Ando S, Ueda M (2006) Synthesis and characterization of novel low-k polyimides from aromatic dianhydrides and aromatic diamine containing phenylene ether and perfluorobiphenyl units. Polym J 38:79–84

    Article  CAS  Google Scholar 

  20. Alvarez C, Lozano AE, Juan-y-Seva M, Campa JG (2020) Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results. J Membr Sci 602:117959

    Article  CAS  Google Scholar 

  21. Wang YC, Huang SH, Hu CC, Li CL, Lee KR, Liaw DJ, Lai JY (2005) Sorption and transport properties of gases in aromatic polyimide membranes. J Membr Sci 248:15–25

    Article  CAS  Google Scholar 

  22. Li T, Sun Y, Dai HY, Liu JJ, Chen J, Liu DW (2022) Characterization of intrinsic low-polyimide films studied by positron annihilation. Mater Sci Eng B Adv 278:115652

    Article  CAS  Google Scholar 

  23. Hu K, Ye Q, Fan Y, Nan J, Chen F, Gao Y, Shen Y (2021) Preparation and characterization of organic soluble polyimides with low dielectric constant containing trifluoromethyl for optoelectronic application. Eur Polym J 157:110566

    Article  CAS  Google Scholar 

  24. Wu X, Cai J, Cheng Y (2022) Synthesis and characterization of high fluorine‐containing polyimides with low‐dielectric constant. J Appl Polym Sci 139:51972

    Article  CAS  Google Scholar 

  25. He X, Zhang S, Zhou Y, Zheng F, Lu Q (2022) The “fluorine impact” on dielectric constant of polyimides: a molecular simulation study. Polymer 254:125073

    Article  CAS  Google Scholar 

  26. Li HS, Liu JA, Wang K, Fan L, Yang SY (2006) Synthesis and characterization of novel fluorinated polyimides derived from 4, 4′-[2, 2, 2-trifluoro-1-(3, 5-ditrifluoromethylphenyl)ethylidene]diphthalic anhydride and aromatic diamines. Polymer 47:1443–1450

  27. Ge Z, Fan L, Yang S (2008) Synthesis and characterization of novel fluorinated polyimides derived from 1, 1′-bis (4-aminophenyl)-1-(3-trifluoromethylphenyl)-2, 2, 2-trifluoroethane and aromatic dianhydrides. Eur Polym J 44:1252–1260

    Article  CAS  Google Scholar 

  28. Tao L, Yang H, Liu J, Fan L, Yang S (2009) Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides. Polymer 50:6009–6018

    Article  CAS  Google Scholar 

  29. Zhong M, Wu XM, Shu C, Wang YL, Huang XY, Huang W (2021) Organosoluble polyimides with low dielectric constant prepared from an asymmetric diamine containing bulky m-trifluoromethyl phenyl group. React Funct Polym 169:105065

    Article  CAS  Google Scholar 

  30. He JJ, Yang HX, Zheng F, Yang SY (2022) Dielectric properties of fluorinated aromatic polyimide films with rigid polymer backbones. Polymers 14:649

    Article  CAS  Google Scholar 

  31. Cho YJ, Park HB (2011) High performance polyimide with high internal free volume elements. Macromol Rapid Comm 32:579–586

    Article  CAS  Google Scholar 

  32. Li YQ, Chu YY, Fang RC, Ding SJ, Wang YL, Shen YZ, Zheng AM (2012) Synthesis and memory characteristics of polyimides containing noncoplanar aryl pendant groups. Polymer 53:229–240

    Article  CAS  Google Scholar 

  33. Liu Y, Qian C, Qu L, Wu Y, Zhang Y, Wu X, Zou B, Chen W, Chen Z, Chi Z, Liu S, Chen X, Xu J (2015) A bulk dielectric polymer film with intrinsic ultralow dielectric constant and outstanding comprehensive properties. Chem Mater 27:6543–6549

    Article  CAS  Google Scholar 

  34. Liu Y, Qian C, Qu L, Liu S, Chi Z, Zhang Y, Xu J (2019) Synthesis and properties of high performance functional polyimides containing rigid nonplanar conjugated fluorene moieties. Chin J Polym Sci 37:416–427

    Article  CAS  Google Scholar 

  35. Li J, Zhang H, Liu F, Lai J, Qi H, You X (2013) A new series of fluorinated alicyclic-functionalized polyimides derivated from natural-(D)-camphor: synthesis, structure–properties relationships and dynamic dielectric analyses. Polymer 54:5673–5683

    Article  CAS  Google Scholar 

  36. Damaceanu MD, Musteata VE, Cristea M, Bruma M (2010) Viscoelastic and dielectric behaviour of thin films made from siloxane-containing poly (oxadiazole-imide)s. Eur Polym J 46:1049–1062

    Article  CAS  Google Scholar 

  37. Mi Z, Liu Z, Yao J, Wang C, Zhou C, Wang D, Zhao X, Zhou H, Zhang Y, Chen C (2018) Transparent and soluble polyimide films from 1, 4: 3, 6-dianhydro-D-mannitol based dianhydride and diamines containing aromatic and semiaromatic units: preparation, characterization, thermal and mechanical properties. Polym Degrad Stabil 151:80–89

    Article  CAS  Google Scholar 

  38. Sawada R, Shinji A (2022) Colorless, low dielectric, and optically active semialicyclic polyimides incorporating a biobased isosorbide moiety in the main chain. Macromolecules 55:6787–6800

    Article  CAS  Google Scholar 

  39. Zhang M, Liu W, Gao X, Cui P, Zou T, Hu G, Tao L, Zhai L (2020) Preparation and characterization of semi-alicyclic polyimides containing Trifluoromethyl groups for optoelectronic application. Polymers 12:1532

    Article  CAS  Google Scholar 

  40. Li J, Zhang G, Zhu Q, Li J, Zhang H, Jing Z (2017) Synthesis and properties of ultralow dielectric constant porous polyimide films containing trifluoromethyl groups. J Appl Polym Sci 134:44494

    Google Scholar 

  41. Zhao W, Lu C, Zhao H, Huang J, Zha J, Cao X, Li R, Wu L (2022) Achieving hydrophobic ultralow dielectric constant polyimide composites: combined efforts of fluorination and porous fillers. Macromol Mater Eng 307:2200291

    Article  CAS  Google Scholar 

  42. Zhang M, Zeng S, Fan Y, Zhang P, Lei Q (2008) Dielectric and conduction properties of polyimide/silica nano‐hybrid films. Polym Compos 29:617–622

    Article  Google Scholar 

  43. Kourakata Y, Onodera T, Kasai H, Jinnai H, Oikawa H (2021) Ultra-low dielectric properties of porous polyimide thin films fabricated by using the two kinds of templates with different particle sizes. Polymer 212:123115

    Article  CAS  Google Scholar 

  44. Lv P, Dong Z, Dai X, Qiu X (2019) Flexible polydimethylsiloxane-based porous polyimide films with an ultralow dielectric constant and remarkable water resistance. ACS Appl Polym Mater 1:2597–2605

    Article  CAS  Google Scholar 

  45. Ding C, Li R, Yu J, Wang X, Huang P (2022) Synthesis of porous polyimide films with low dielectric constant and excellent mechanical properties by ambient pressure drying. J Mater Sci 57:9480–9492

    Article  CAS  Google Scholar 

  46. Lin DL, Liu Y, Jia Z, Qi S, Wu D (2020) Structural evolution of macromolecular chain during pre-imidization process and its effects on polyimide film properties. J Phys Chem B 124:7969–7978

    Article  CAS  Google Scholar 

  47. Zhang P, Zhang L, Zhang K, Zhao J, Li Y (2021) Preparation of polyimide films with ultra-low dielectric constant by phase inversion. Crystals 11:1383

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Project No. 52202079), Shenzhen Science and Technology Innovation Committee (JSGGZD20220822095400002, JCYJ20200109141808025, JSGG20210629144802007) and Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic (6023271013K,6021271003K), and the Start-up Scientific Research Foundation Project of Shenzhen Polytechnic (6023312048K).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen Zhang or Chao Teng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Li, L., Wang, Y. et al. Methods and strategies to decrease the dielectric properties of polyimide films: a review. J Sol-Gel Sci Technol 108, 1–12 (2023). https://doi.org/10.1007/s10971-023-06143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06143-5

Keywords

Navigation