Skip to main content
Log in

Exploration of Ce+3 substitution on electron density distribution, optical, and magnetic properties of Ni-Co-Zn spinel nano-ferrites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present research module is about microwave-assisted sol-gel combustion synthesis of rare earth doped Ni-Co-Zn spinel ferrite nanoparticles. The phase formation, morphologies, and crystal structure were investigated by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR). The structural parameters, cation distribution, and lattice strain were calculated by Rietveld analysis and Williamson-Hall (W-H) plots. The electron density mapping of rare earth substituted Ni-Co spinel nano-ferrites was calculated by the G-fourier tool. The vibrating sample magnetometer (VSM) was used to carry out the room-temperature hysteresis curve of Ni-Co spinel nano-ferrites. The magnetic curves show a thin loop with low coercivity and retentivity, thereby indicating the soft behavior of spinel nano-ferrites. The effect of the substitution of non-magnetic ions on coercivity, magnetic interaction constant, permeability, and Curie temperature on Ni-Co-Zn mixed ferrite was discussed in detail. The saturation magnetization of the samples decreases with the addition of cerium, which is due to a reduction in particle size and hence a lower surface-to-volume ratio as well as spin canting phenomena. Rare earth-substituted nanocrystalline ferrites can be used in a variety of advanced technological applications such as switching devices and high-frequency devices.

Graphical Abstract

Highlights

  • The effect of Rare earth substitution on the structural properties of spinel ferrite was studied.

  • Magnetic dilution due to rare earth substitution in spinel ferrite was studied.

  • Cation distribution and magnetic interactions were explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wakde GC, Raghorte VR, Pethe GB, Kakde AS, Dudhe CM, Palikundwar UA (2022) Study of XRD, dielectric properties and DC electrical conductivity of Li-Zn-Al ferrite synthesized by sol–gel combustion method. Ferroelectrics 587:18–32

    Article  CAS  Google Scholar 

  2. Almessiere MA, Slimania Y, Gunguneş H, Kostishyn VG, Trukhanov SV, Trukhanov AV, Baykal A (2020) Impact of Eu3+ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites. Ceram Int 46:11124–11131

    Article  CAS  Google Scholar 

  3. Belekar RM, Wani MA, Athawale SA, Kakde AS, Raghuvanshi MR (2022) Minimum hysteresis loss and amplified magnetic properties of superparamagnetic Ni–Zn nano spinel ferrite. Phys Open 10:100099

    Article  CAS  Google Scholar 

  4. Tishkevich DI, Korolkov IV, Kozlovskiy AL, Anisovich M, Vinnik DA, Ermekova AE, Vorobjova AI, Shumskaya EE, Zubar TI, Trukhanov SV, Zdorovets MV, Trukhanov AV (2019) Immobilization of boron-rich compound on Fe3O4 nanoparticles: stability and cytotoxicity. J Alloy Compd 797:573–581

    Article  CAS  Google Scholar 

  5. Sudheesh V, Thomas N, Roona N, Choudhary H, Sahoo B, Lakshmi N, Sebastian V (2018) Synthesis of nanocrystalline spinel ferrite (MFe2O4, M = Zn and Mg) by solution combustion method: influence of fuel to oxidizer ratio. J Alloy Compd 742:577–586

    Article  CAS  Google Scholar 

  6. Heiba Z, Bakr Mohamed M, Arda L, Dogan N (2015) Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. J Magn Magn Mater 391:195–202

    Article  CAS  Google Scholar 

  7. Mozaari M, Amighian J, Darsheshdar E (2014) Magnetic and structural studies of nickel-substituted cobalt ferrite nanoparticles, synthesized by the sol-gel method. J Magn Magn Mater 350:19–22

    Article  Google Scholar 

  8. Almessiere MA, Slimani Y, Trukhanov AV, Baykal A, Gungunes H, Trukhanova EL, Trukhanov SV, Kostishin VG (2020) Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2-x)O4 nanosized ferrites. J Ind Eng Chem 90:251–259

    Article  CAS  Google Scholar 

  9. Naik S, Salker A (2012) Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J Mater Chem 22:2740–2750

    Article  CAS  Google Scholar 

  10. Ziarati A, Sobhani-Nasab A, Rahimi-Nasrabadi M, Ganjali MR, Badiei A (2017) Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2–xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J Rare Earths 35(4):374–381

    Article  CAS  Google Scholar 

  11. Rahimi-Nasrabadi M, Behpour M, Sobhani-Nasab A, Jeddy MR (2016) Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J Mater Sci Electron 27(11):11691–11697

    Article  CAS  Google Scholar 

  12. Zubair A, Ahmad Z, Mahmood A, Cheong WC, Ali I, Khan MA, Chughtai AH, Ashiq MN (2017) Structural, morphological and magnetic properties of Eu-doped CoFe2O4 nano-ferrites. Results Phys 7:3203–3208

    Article  Google Scholar 

  13. Joshi S, Kumar M, Pandey H, Singh M, Pal P (2018) Structural, magnetic and dielectric properties of Gd3+ substitutedNiFe2O4nanoparticles. J Alloy Compd 768:287–97.

    Article  CAS  Google Scholar 

  14. Kakde AS, Shingade BA, Meshram NS, Rewatkar KG, Sawadh PS (2014) Structural and magnetic properties of Sn-Zr substituted calcium nano-hexaferrite. Mater Sci 1(2):60–63

    Google Scholar 

  15. Gaikwad VM, Sheikh JR, Acharya SA (2015) Investigation of photocatalytic and dielectric behavior of LaFeO3 nanoparticles prepared by microwave-assisted sol–gel combustion route, J Sol-Gel Sci Technol https://doi.org/10.1007/s10971-015-3746-9

  16. Kakde AS, Belekar RM, Wakde GC, Borikar MA, Rewatkar KG, Shingade BA (2021) Evidence of magnetic dilution due to unusual occupancy of zinc on B-site in NiFe2O4 spinel nano-ferrite. J Solid State Chem 300:122279

    Article  CAS  Google Scholar 

  17. Velinov N, Petrova T, Ivanova R, Tsoncheva T, Kovacheva D, Mitov I (2020) Synthesis and characterization of copper-nickel ferrite catalysts for ethyl acetate oxidation. Hyperfine Interact 241:31

    Article  CAS  Google Scholar 

  18. Rashad MM, A.Rayan D, O.Turky A, Hessien MM (2015) Effect of Co2+ and Y3+ ions insertion on the microstructure development and magnetic properties of Ni0.5Zn0.5Fe2O4 powders synthesized using Co-precipitation method. J Magn Magn Mater 374:359–366

    Article  CAS  Google Scholar 

  19. Almessiere MA, Slimani Y, Auwal IA, Shirsath SE, Manikandan A, Baykal A, Özçelik B, Ercan I, Trukhanov SV, Vinnik DA, Trukhanov AV (2020) Impact of Tm3+ and Tb3+ rare earth cations substitution on the structure and magnetic parameters of Co-Ni nanospinel ferrite. Nanomaterials 10:2384

    Article  CAS  Google Scholar 

  20. Kakde AS, Chaware PJ, Sawadh PS, Prakash CS, Rewatkar KG (2015) Microstructure and magnetic characterization of Sn-Zr substituted calcium nano hexaferrite powder. Int J Adv Sci Tech Res 5:31–35

    Google Scholar 

  21. Ateia EE, Abdelmaksoud MK, Arman MM, Shafaay AS (2020) Comparative study on the physical properties of rare earth substituted nanosized CoFe2O4. Appl Phys A 126:91

    Article  CAS  Google Scholar 

  22. Kurmude DV, Kale CM, Aghav S, Shengule DR, Jadhav KM (2014) Superparamagnetic behavior of zinc-substituted nickel ferrite nanoparticles and its effect on Mossbauer and magnetic parameters. J Supercond Novel Magn 27:1889–1897

    Article  CAS  Google Scholar 

  23. Upadhyay C, Verma H, Anand S (2004) Cation distribution in nanosized Ni–Zn ferrites. J Appl Phys 95:5746

    Article  CAS  Google Scholar 

  24. Atif M, Nadeem M, Grossinger R, Turtelli R (2011) “Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. J Alloy Compd 509:5720–5724

    Article  CAS  Google Scholar 

  25. Ortiz-Quiñonez J-L, Pal U, Villanueva MS (2018) Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co−Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3:14986–15001

    Article  Google Scholar 

  26. Phugate DV, Borade RB, Kadam SB, Dhale LA, Kadam RH, Shirsath SE, Kadam AB (2000) Effect of Ho3+ ion doping on thermal, structural, and morphological properties of Co–Ni ferrite synthesized by sol-gel method. J Supercond Novel Magn 33(10):1–10

    Google Scholar 

  27. Bharathi KK, Markandeyulu G, Ramana CV (2011) Structural, magnetic, electrical, and magnetoelectric properties of Sm-and Ho substituted nickel ferrites. J Phys Chem C 115(2):554–560

    Article  CAS  Google Scholar 

  28. Nordhei C, Mathisen K, Bezverkhyy I, Nicholson D (2008) Decomposition of carbon dioxide over the putative cubic spinel nanophase cobalt, nickel, and zinc ferrites. J Phys Chem C 112:6531–6537

    Article  CAS  Google Scholar 

  29. Sugiyama J, Atsumi T, Koiwai A, Sasaki T, Hioki T, Noda S, Kamegashira N (1997) The effect of oxygen deficiency on the structural phase transition and electronic and magnetic properties of the spinel LiMn2O4−δ. J Phys: Condens Matter 9:1729–1741

    CAS  Google Scholar 

  30. Guinebretière R (2007) X-ray diffraction by polycrystalline materials, ISTE

  31. Mande VK, Bhoyar DN, Vyawahare SK, Jadhav KM (2018) Effect of Zn2+–Cr3+ substitution on structural, morphological, magnetic and electrical properties of NiFe2O4 ferrite nanoparticles. J Mater Sci Mater Electron 29(17):15259–15270

    Article  CAS  Google Scholar 

  32. Kokare MK, Jadhav NitinA, Kumar Yogesh, Jadhav KM, Rathod SM (2018) Effect of Nd3+ doping on structural and magnetic properties of Ni0.5Co0.5Fe2O4 nanocrystalline ferrites synthesized by sol-gel auto combustion method. J Alloy Compd 748:1053–1061

    Article  CAS  Google Scholar 

  33. Kurmude DV, Barkule RS, Raut AV, Shengule DR, Jadhav KM (2013) X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J Supercond Novel Magn 27:547–553

    Article  Google Scholar 

  34. Manzoor A, Khan MA, Shahid M, Warsi MF (2017) Investigation of structural, dielectric and magnetic properties of Ho substituted nanostructured lithium ferrites synthesized via auto-citric combustion route. J Alloy Compd 710:547–556

    Article  CAS  Google Scholar 

  35. Gaikwad VM, Brahma M, Borah R, Ravi S (2019) Structural, optical and magnetic properties of Pr2FeCrO6 nanoparticles. J Solid-State Chem 278:120903

    Article  CAS  Google Scholar 

  36. Gonzales-Platas J, Rodriguez-Carvajal J (2007) GFourier Program Version 04.06

  37. Chaturvedi S, Shyam P, Bag R, Shirolkar MM, Kumar J, Kaur H, Singh S, Awasthi AM, Kulkarni S (2017) Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3. Phys Rev B 96:024434

    Article  Google Scholar 

  38. Chandramohan P, Srinivasan MP, Velmurugan S, Narasimhan SV (2011) Cation distribution and particle size effect on Raman spectrum of CoFe2O4. J Solid-State Chem 184:89–96

    Article  CAS  Google Scholar 

  39. Zi J, Buscher H, Falter C, Ludwig W, Zhang K, Xie X (1996) Raman shifts in Si nanocrystals. Appl Phys Lett 69(2):200–202

    Article  CAS  Google Scholar 

  40. Saqib H, Rahman S, Susilo R, Chen B, Ning D (2019) Structural, vibrational, electrical, and magnetic properties of mixed spinel ferrites Mg1-xZnxFe2O4 nanoparticles prepared by co-precipitation AIP Adv 9:055306

    Article  Google Scholar 

  41. Ahamad HS, Kakde AS, Meshram NS, Rewatkar KG, Dhoble SJ (2016) Synthesis and characterization of nanostructure copper ferrites by microwave assisted sol-gel auto-combustion method. Int J Lumines Appl 6(2):135–138

    Google Scholar 

  42. Cullity BD, Weymouth JW (1957) Elements of X-ray diffraction. Am J Phys 25:394–395

    Article  Google Scholar 

  43. Chen Z, Du Y, Li Z, Yang K, Lv X (2017) Controllable synthesis of magnetic Fe3O4 particles with different morphology by one-step hydrothermal route. J Magn Magn Mater 426:121–125

    Article  CAS  Google Scholar 

  44. Sharma S, Verma MK, Sharma ND, Choudhary N, Singh S, Singh D (2021) Rare-earth doped Ni–Co ferrites synthesized by Pechini method: Cation distribution and high-temperature magnetic studies. Ceram Int 47:17510–17519

    Article  CAS  Google Scholar 

  45. Ortiz-Quiñonez J-L, Pal U, Villanueva MS (2018) Structural, magnetic, and catalytic evaluation of spinel Co, Ni, and Co−Ni ferrite nanoparticles fabricated by low-temperature solution combustion process. ACS Omega 3:14986–15001

    Article  Google Scholar 

  46. Hassanzadeh-Tabrizi SA, Behbahanian S, Amighian J (2016) Synthesis and magnetic properties of NiFe2–xSmxO4 nanopowder. J Magn Magn Mater 410:242–247

    Article  CAS  Google Scholar 

  47. Nikumbh AK, Pawar RA, Nighot DV, Gugale GS, Sangale MD, Khanvilkar MB, Nagawade AV (2014) Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 355:201–209

    Article  CAS  Google Scholar 

  48. Zaquine I, Benazizi H, Mage J (1988) Ferrite thin films for microwave applications. J Appl Phys 64:5822–5824

    Article  CAS  Google Scholar 

  49. Ghone DM, Mathe VL, Patankar KK, Kaushik SD (2018) Microstructure, lattice strain, magnetic and magnetostriction properties of holmium substituted cobalt ferrites obtained by co-precipitation method. J Alloy Compd 739:52–61

    Article  CAS  Google Scholar 

  50. Zhang M, Zi Z, Liu Q, Zhang P, Tang X, Yang J, Zhu X, Sun Y, Dai J (2013) Size effects on magnetic properties of Ni0.5Zn0.5Fe2O4 prepared by sol-gel method. Adv Mater Sci Eng 2013:609819

    Article  Google Scholar 

  51. Yousuf MA, Jabeen S, Shahi M, Khan M, Shakir I, Warsi M (2020) Magnetic and electrical properties of yttrium substituted manganese ferrite nanoparticles prepared via micro-emulsion route. Results Phys 16:102973

    Article  Google Scholar 

  52. Slimani Y, Almessiere MA, Nawaz M, Baykal A, Akhtar S, Ercan I, Belenli I (2019) Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles. Ceram Int 45(5):6021–6029

    Article  CAS  Google Scholar 

  53. Pervaiz E, Gul IH (2013) Influence of rare earth (Gd3+) on structural, gigahertz dielectric and magnetic studies of cobalt ferrite. J Phys Conf Ser 439:012015

  54. Vadivela M, Ramesh Babu R, Ramamurthi K, Arivanandhan M (2017) Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 102:1–11

    Article  Google Scholar 

  55. Nikumbh AK, Pawar RA, Nighot DV, Gugale GS, Sangale MD, Khanvilkar MB, Nagawade AV (2014) Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. J Magn Magn Mater 355:201–209

    Article  CAS  Google Scholar 

  56. Ponhan W, Maensiri S (2009) Fabrication and magnetic properties of electrospun copper ferrite (CuFe2O4) nanofibers. Solid State Sci 11:479–484

    Article  CAS  Google Scholar 

  57. Kambale RC, Song KM, Koo YS, Hur N (2011) Low-temperature synthesis of nanocrystalline Dy3+ doped cobalt ferrite: Structural and magnetic properties. J Appl Phys 110:053910

    Article  Google Scholar 

  58. Niaz Akhtar M, Rahman A, Sulong AB, Azhar Khan M (2017) Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high-frequency applications. Ceram Int 43:4357–4365

    Article  Google Scholar 

  59. Hossain MD, Jamil ATMK, Md. Sarowar Hossain, Ahmed SJ, Das HN, Rashid R, Hakimd MA, Khan MNI (2022) Investigation on structure, thermodynamic and multifunctional properties of Ni–Zn–Co ferrite for Gd3+ substitution. RSC Adv 12:4656

    Article  CAS  Google Scholar 

  60. Chandekar KV, Kant KM (2018) Relaxation phenomenon and relaxivity of cetrimonium bromide (CTAB) coated CoFe2O4 nanoplatelets. Physica B 545:536–548

    Article  CAS  Google Scholar 

  61. Wani MA, Belekar RM, Athwale SA, Wankhede YB, Muley GG, Kakde AS, Raghuvanshi MR (2022) Energy transfer mechanism of Eu2+, Mn2+ Doped lithium aluminate phosphor: synthesis, Hirshfeld surface analysis and optical study. Mater Chem Phys 292:126796

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Belekar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kakde, A.S., Wakde, G.C., Wani, M.A. et al. Exploration of Ce+3 substitution on electron density distribution, optical, and magnetic properties of Ni-Co-Zn spinel nano-ferrites. J Sol-Gel Sci Technol 107, 401–416 (2023). https://doi.org/10.1007/s10971-023-06121-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06121-x

Keywords

Navigation