Skip to main content
Log in

Enhancement in photoelectrochemical performance of ZnO nanoparticle–based photoelectrodes with incorporation of Cu dopant source

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Pristine- and copper-doped ZnO thin films with various concentrations were deposited on tin-doped indium oxide–coated glass substrates using the sol–gel method followed by the spin-coating technique. All the deposited samples were further processed with annealing at 450 °C with the aim of decreasing defects in the sample. Structural properties revealed that films are polycrystalline in nature and morphological study represented an increase in particle size with increasing Cu-doping concentration. The absorption data show band gap narrowing and electrical analysis shows an increase in conductivity and carrier concentration with optimized Cu-doping concentration. This study shows that sol–gel–derived Cu-doped ZnO thin films show low band gap, low electrical resistivity, and high transmittance and can be used for optoelectronic devices. Furthermore, films were tested for photoelectrochemical performance in 0.5 M Na2SO4 electrolyte solution. An optimum amount of Cu dopant with ZnO nanoparticles (NPs) has shown enhanced photocurrent density which six times enhanced and increased photoconversion efficiency compared to those of the bare ZnO NPs.

Graphical abstract

Structural, surface morphological and photoelectrochemical study of Cu-doped ZnO samples. The formation of Cu-doped ZnO nanoparticles with various concentrations of Cu dopants. The enhanced photocurrent density in the optimized sample is more than six times compared to those of the bare ZnO nanoparticles

Highlights

  • Low cost hydrothermal method was used to prepare Cu doped ZnO nanoparticles based thin films.

  • Cu doping exhibit change in band gap compared to undoped ZnO nanoparticles based thin films.

  • The increase of conductivity is caused by extra electron carrier with Cu doping.

  • Electrochemical measurements confirm applicability in photoelectrochemical cells.

  • Cu doped ZnO nanoparticles enhanced the photocurrent density and photo-conversion efficiency which is more than 06 times compared to those of the bare ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park WI, Kim DH, Jung SW, Yi GC (2002) Appl Phys Lett 80:4232–4234

    Article  CAS  Google Scholar 

  2. Dwivedi C, Dutta V (2012) Nanotechnology 3:015011

    Google Scholar 

  3. Liu KW, Salley GM, Gamelin DR (2005) J Phys Chem B 109:14486–14495

    Article  CAS  Google Scholar 

  4. Majidi H, Baxter JB (2011) Electrochim Acta 56:2703–2711

    Article  CAS  Google Scholar 

  5. Chattopadhyay S, Chen LC, Chen KH (2011) NPG Asia Mater 3:74–81

    Article  Google Scholar 

  6. Yu A, Qianb J, Pan H, Cui Y, Xu M, Tu L, Chai Q, Zhou X, Sens (2011) Actuators B 158:9–16

    Article  CAS  Google Scholar 

  7. Gratzel M (2001) Nature 414:338–344

    Article  CAS  Google Scholar 

  8. Sharma A, Chakraborty M, Thangavel R (2018) J Mater Sci Mater Electron 29:14710–14722

    Article  CAS  Google Scholar 

  9. Rokade A, Rondiyam S, Sharma V, Prasad M, Pathan H, Jadkar S (2017) J Solid State Electrochem 21:2639–2648

    Article  CAS  Google Scholar 

  10. Zhang W, Yan D, Appavoo K, Cen J, Wu Q (2017) Chem Mater 29:4036–4043

    Article  CAS  Google Scholar 

  11. Liu M, Nam CY, Black CT, Kamcey K (2013) J Phys Chem C 117:13396–13402

    Article  CAS  Google Scholar 

  12. Look DC (2001) J Mater Sci Eng B 80:383–387

    Article  Google Scholar 

  13. Jiang C, Moniz SJA, Khraisheh M (2014) Chem Eur J 20:12954–12961

    Article  CAS  Google Scholar 

  14. Gupta M, Sharma V, Shrivastava J, Solanki A, Singh AP, Satsangi VR, Dass S, Shrivastav R (2009) Bull Mater Sci 32:23–30

    Article  CAS  Google Scholar 

  15. Sharma V, Kumar P, Shrivastava J, Solanki A, Satsangi VR, Dass S, Shrivastav R (2011) J Mater Sci 46:3792–3801

    Article  CAS  Google Scholar 

  16. Tyona MD, Osuji RU, Asogwa PU, Jambure SB, Ezema FI (2017) J Solid State Electrochem 21(9):2629–2638

    Article  CAS  Google Scholar 

  17. Chakraborty M, Ghosh A, Thangavel R (2015) J Sol-Gel Sci Technol 74:756–764

    Article  CAS  Google Scholar 

  18. Joshi BC, Chaudhri AK (2022) ACS Omega 7(25):21877–21881

    Article  Google Scholar 

  19. Horzum S, Torun E, Serin T, Peeters F (2016) Philos Mag 96:1743–1756

    Article  CAS  Google Scholar 

  20. Joshi K, Rawat M, Gautam SK, Singh RG, Ramola RC, Singh F (2016) J Alloy Compd 680:252–258

    Article  CAS  Google Scholar 

  21. Krishna VSG, Mahesha MG (2022) J Alloy Compd 899:163357

    Article  Google Scholar 

  22. Thankalekshmi RDR, Samwad D, Rastogi AC (2013) Adv Mater Lett 4:9–14

    Article  Google Scholar 

  23. Sajjad M, Ullah I, Khan MI, Khan J, Khan MY, Qureshi MT (2018) Results Phys 9:1301–1309

    Article  Google Scholar 

  24. Bakhtiargonbadi F, Esfahani H, Moakhar RS, Dabir F (2020) Mater Chem Phys 252:123270

    Article  CAS  Google Scholar 

  25. Aboud AA, Shaban MD, Revaprasadu N (2019) RSC Adv 9:7729–7736

    Article  CAS  Google Scholar 

  26. Singhal S, Kaur J, Sharma TNR (2012) Phys B Condens Matter 407(8):1223–1226

    Article  CAS  Google Scholar 

  27. Jothilakshmi R, Ramakrishnan V, Thangavel R, Kumar J, Sarua A, Kuball M (2009) J Raman Spectrosc 40(5):556–561

    Article  CAS  Google Scholar 

  28. Udayabhaskar R, Karthikeyan B (2014) J Appl Phys 116(9):094310

    Article  Google Scholar 

  29. Ryoken H, Sakaguchi I, Ohashi N, Sekiguchi T, Hishita S, Haneda H (2005) J Mater Res 20:2866–2872

    Article  CAS  Google Scholar 

  30. Iandolo B, Zhang H, Wickman B, Zoric I, Conibeer G, Hellman A (2015) RSC Adv 5:61021–61030

    Article  CAS  Google Scholar 

  31. Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y, Zhang Y (2015) Nano Res 8(9):2891–2900

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MC and RT would like to acknowledge Dr S. K. Sharma, Indian School of Mines, Dhanbad, for his support in getting photoluminescence measurements. MC and RT acknowledge the financial support from the Indian Institute of Technology (Indian School of Mines), Dhanbad, India. MC would like to acknowledge the Department of Science and Technology (DST), India, for providing Indo-US Science and Technology Forum (IUSSTF) Bhaskara Advanced Solar Energy (BASE) fellowship-2016 and National Postdoctoral Fellowship with the project no. PDF/2017/001629.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohua Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, M., Thangavel, R. & Roy, D. Enhancement in photoelectrochemical performance of ZnO nanoparticle–based photoelectrodes with incorporation of Cu dopant source. J Sol-Gel Sci Technol 107, 467–473 (2023). https://doi.org/10.1007/s10971-023-06118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06118-6

Keyword

Navigation