Skip to main content
Log in

Synthesis of the cobalt ferrite magnetic nanoparticles by sol–gel auto-combustion method in the presence of egg white (albumin)

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The cobalt ferrite magnetic nanoparticles were synthesized by the sol–gel auto-combustion method in the presence of various amounts (0, 0.25, 0.5, 0.75, and 1 g) of egg white protein (albumin). The preparation steps were completed by a heat treatment at 800 °C. The phase formation and morphology of the resulting nanoparticles were investigated by the simultaneous differential thermal analysis-thermogravimetric (DTA-TG), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and Fourier-transform infrared (FTIR) spectroscopy. Further studies were performed on the critical impact of the heat treatment on crystalline phase formation. The phase identification by XRD demonstrated the formation of the cubic spinel structure of the cobalt ferrite phase. XRD data were also refined by the Rietveld method for a more accurate calculation of structural parameters. The addition of albumin reduced the average crystallite size from ~70 to ~27 nm. Magnetic properties were measured by a vibrating sample magnetometer (VSM), and the curves show the ferromagnetic behavior of the nanoparticles with an increase in the coercivity (from ~290 to ~470 Oe) and saturation magnetization (from ~41 to ~51 emu.g−1) as a result of albumin addition. The cation redistribution due to the presence of albumin is the reason for the variation of coercivity and magnetization through its effect on magnetic anisotropy and inversion degree, respectively.

Graphical Abstract

The cobalt ferrite magnetic nanoparticles were synthesized by the solgel auto-combustion method in the presence of various amounts of egg white protein (albumin) and then the effect of presence of this agent on the structural and magnetic properties of these nanoparticles was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Routray KL, Saha S, Behera D (2018) Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Mater Chem Phys 224:29–35. https://doi.org/10.1016/j.matchemphys.2018.11.073

    Article  CAS  Google Scholar 

  2. Mammo TW, Kumari CV, Margarette SJ et al. (2020) Synthesis, structural, dielectric and magnetic properties of cobalt ferrite nanomaterial prepared by sol-gel autocombustion technique. Phys B Condens Matter 581:411769. https://doi.org/10.1016/j.physb.2019.411769

    Article  CAS  Google Scholar 

  3. Patankar KK, Ghone DM, Mathe VL, Kaushik SD (2018) Structural and physical property study of sol–gel synthesized CoFe2-xHoxO4 nano ferrites. J Magn Magn Mater 454:71–77. https://doi.org/10.1016/j.jmmm.2018.01.039

    Article  CAS  Google Scholar 

  4. Amiri M, Salavati-Niasari M, Akbari A (2019) Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Colloid Interface Sci 265:29–44. https://doi.org/10.1016/j.cis.2019.01.003

    Article  CAS  Google Scholar 

  5. Zhang H, Wang J, Zeng Y et al. (2020) Leucine-coated cobalt ferrite nanoparticles: synthesis, characterization and potential biomedical applications for drug delivery. Phys Lett Sect A Gen At Solid State Phys 384:126600. https://doi.org/10.1016/j.physleta.2020.126600

    Article  CAS  Google Scholar 

  6. Heiba ZK, Mohamed MB, Ahmed SI (2017) Cation distribution correlated with magnetic properties of cobalt ferrite nanoparticles defective by vanadium doping. J Magn Magn Mater 441:409–416. https://doi.org/10.1016/j.jmmm.2017.06.021

    Article  CAS  Google Scholar 

  7. Mahajan P, Sharma A, Kaur B et al. (2019) Green synthesized (Ocimum sanctum and Allium sativum) Ag-doped cobalt ferrite nanoparticles for antibacterial application. Vacuum 161:389–397. https://doi.org/10.1016/j.vacuum.2018.12.021

    Article  CAS  Google Scholar 

  8. Elayakumar K, Dinesh A, Manikandan A et al. (2018) Structural, morphological, enhanced magnetic properties and antibacterial bio-medical activity of rare earth element (REE) Cerium (Ce3+) doped CoFe2O4 nanoparticles. J Magn Magn Mater. https://doi.org/10.1016/j.jmmm.2018.09.089

  9. Virumbrales M, Blanco-Gutiérrez V, Delgado-Cabello A et al. (2018) Superparamagnetism in CoFe2O4nanoparticles: an example of a collective magnetic behavior dependent on the medium. J Alloys Compd 767:559–566. https://doi.org/10.1016/j.jallcom.2018.07.096

    Article  CAS  Google Scholar 

  10. Maleki A, Hosseini N, Taherizadeh A (2018) Synthesis and characterization of cobalt ferrite nanoparticles prepared by the glycine-nitrate process. Ceram Int 44:8576–8581. https://doi.org/10.1016/j.ceramint.2018.02.063

    Article  CAS  Google Scholar 

  11. Noormohamadi HR, Fat’hi MR, Ghaedi M (2018) Fabrication of polyethyleneimine modified cobalt ferrite as a new magnetic sorbent for the micro-solid phase extraction of tartrazine from food and water samples. J Colloid Interface Sci 531:343–351. https://doi.org/10.1016/j.jcis.2018.07.026

    Article  CAS  Google Scholar 

  12. Srinivasamurthy KM, Angadi VJ, Kubrin SP et al. (2018) Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications. Ceram Int 44:9194–9203. https://doi.org/10.1016/j.ceramint.2018.02.129

    Article  CAS  Google Scholar 

  13. Abou Hammad AB, Abd El-Aziz ME, Hasanin MS, Kamel S (2019) A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohydr Polym 216:54–62. https://doi.org/10.1016/j.carbpol.2019.03.038

    Article  CAS  Google Scholar 

  14. Gharibshahian M, Nourbakhsh MS, Mirzaee O (2018) Evaluation of the superparamagnetic and biological properties of microwave assisted synthesized Zn & Cd doped CoFe2O4nanoparticles via Pechini sol–gel method. J Sol-Gel Sci Technol 85:684–692. https://doi.org/10.1007/s10971-017-4570-1

    Article  CAS  Google Scholar 

  15. Prabhakaran T, Mangalaraja RV, Denardin JC, Jiménez JA (2017) The effect of calcination temperature on the structural and magnetic properties of co-precipitated CoFe 2 O 4 nanoparticles. J Alloys Compd 716:171–183. https://doi.org/10.1016/j.jallcom.2017.05.048

    Article  CAS  Google Scholar 

  16. Hossain A, Sarker MSI, Khan MKR et al. (2018) Structural, magnetic, and electrical properties of sol–gel derived cobalt ferrite nanoparticles. Appl Phys A 124:608. https://doi.org/10.1007/s00339-018-2042-2

    Article  CAS  Google Scholar 

  17. Kumar RV, Anupama AV, Kumar R et al. (2018) Cation distributions and magnetism of Al-substituted CoFe2O4 - NiFe2O4 solid solutions synthesized by sol-gel auto-combustion method. Ceram Int 44:20708–20715. https://doi.org/10.1016/j.ceramint.2018.08.065

    Article  CAS  Google Scholar 

  18. Gabal MA, Al-Juaid AA, El-Rashed S, Hussein MA (2017) Synthesis and characterization of nano-sized CoFe2O4 via facile methods: a comparative study. Mater Res Bull 89:68–78. https://doi.org/10.1016/j.materresbull.2016.12.048

    Article  CAS  Google Scholar 

  19. Han G, Li M, Yu Y et al. (2019) Structure and magnetic properties of cobalt ferrite foam with low mass density. J Alloys Compd 790:947–954. https://doi.org/10.1016/j.jallcom.2019.03.157

    Article  CAS  Google Scholar 

  20. Venturini J, Wermuth TB, Machado MC et al. (2019) The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. J Eur Ceram Soc 39:3442–3449. https://doi.org/10.1016/j.jeurceramsoc.2019.01.030

    Article  CAS  Google Scholar 

  21. Maksoud MIAA, El-Sayyad GS, Ashour AH et al. (2019) Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb Pathog 127:144–158. https://doi.org/10.1016/j.micpath.2018.11.045

  22. Kennaz H, Harat A, Guellati O et al. (2018) Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application. J Solid State Electrochem 22:835–847. https://doi.org/10.1007/s10008-017-3813-y

    Article  CAS  Google Scholar 

  23. Mohammadi Z, Attaran N, Sazgarnia A et al. (2020) Superparamagnetic cobalt ferrite nanoparticles as T2 contrast agent in MRI: in vitro study. IET Nanobiotechnol 14:396–404. https://doi.org/10.1049/iet-nbt.2019.0210

    Article  Google Scholar 

  24. Muhamad Arshad J, Raza W, Amin N et al. (2020) Synthesis and characterization of cobalt ferrites as MRI contrast agent. Mater Today Proc 0–4. https://doi.org/10.1016/j.matpr.2020.04.746

  25. Wu H, Liu G, Wang X et al. (2011) Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 7:3496–3504. https://doi.org/10.1016/j.actbio.2011.05.031

    Article  CAS  Google Scholar 

  26. Shi Z, Zeng Y, Chen X et al. (2020) Mesoporous superparamagnetic cobalt ferrite nanoclusters: synthesis, characterization and application in drug delivery. J Magn Magn Mater 498:166222. https://doi.org/10.1016/j.jmmm.2019.166222

    Article  CAS  Google Scholar 

  27. Georgiadou V, Makris G, Papagiannopoulou D et al. (2016) Octadecylamine-mediated versatile coating of CoFe2O4NPs for the sustained release of anti-inflammatory drug naproxen and in vivo target selectivity. ACS Appl Mater Interfaces 8:9345–9360. https://doi.org/10.1021/acsami.6b00408

    Article  CAS  Google Scholar 

  28. Cai B, Zhao M, Ma Y et al. (2015) Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS Appl Mater Interfaces 7:1327–1333. https://doi.org/10.1021/am507689a

    Article  CAS  Google Scholar 

  29. Abdel Maksoud MIA, El-Sayyad GS, Ashour AH et al. (2018) Synthesis and characterization of metals-substituted cobalt ferrite [MxCo(1-x)Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater Sci Eng C 92:644–656. https://doi.org/10.1016/j.msec.2018.07.007

    Article  CAS  Google Scholar 

  30. Pita M, Abad JM, Vaz-Dominguez C et al. (2008) Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor. J Colloid Interface Sci 321:484–492. https://doi.org/10.1016/j.jcis.2008.02.010

    Article  CAS  Google Scholar 

  31. Gandhi S, Issar S, Mahapatro AK, Roy I (2020) Cobalt ferrite nanoparticles for bimodal hyperthermia and their mechanistic interactions with lysozyme. J Mol Liq 310:113194. https://doi.org/10.1016/j.molliq.2020.113194

    Article  CAS  Google Scholar 

  32. Sangeetha K, Ashok M, Girija EK (2019) Development of multifunctional cobalt ferrite/hydroxyapatite nanocomposites by microwave assisted wet precipitation method: a promising platform for synergistic chemo-hyperthermia therapy. Ceram Int 45:12860–12869. https://doi.org/10.1016/j.ceramint.2019.03.209

    Article  CAS  Google Scholar 

  33. Nam PH, Lu LT, Linh PH et al. (2018) Polymer-coated cobalt ferrite nanoparticles: synthesis, characterization, and toxicity for hyperthermia applications. New J Chem 42:14530–14541. https://doi.org/10.1039/C8NJ01701H

    Article  CAS  Google Scholar 

  34. Mazario E, Menéndez N, Herrasti P et al. (2013) Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C 117:11405–11411. https://doi.org/10.1021/jp4023025

    Article  CAS  Google Scholar 

  35. Çelik Ö, Can MM, Firat T (2014) Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia. J Nanoparticle Res 16. https://doi.org/10.1007/s11051-014-2321-6

  36. Cruz MM, Ferreira LP, Ramos J et al. (2017) Enhanced magnetic hyperthermia of CoFe2O4and MnFe2O4nanoparticles. J Alloys Compd 703:370–380. https://doi.org/10.1016/j.jallcom.2017.01.297

    Article  CAS  Google Scholar 

  37. Mendo SG, Alves AF, Ferreira LP et al. (2015) Hyperthermia studies of ferrite nanoparticles synthesized in the presence of cotton. New J Chem 39:7182–7193. https://doi.org/10.1039/C5NJ00009B

    Article  CAS  Google Scholar 

  38. Fernandes de Medeiros IA, Lopes-Moriyama AL, de Souza CP (2017) Effect of synthesis parameters on the size of cobalt ferrite crystallite. Ceram Int 43:3962–3969. https://doi.org/10.1016/j.ceramint.2016.10.105

    Article  CAS  Google Scholar 

  39. Khan MA, Alam MM, Naushad M et al. (2015) Sol-gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: an ecofriendly and economical approach. Chem Eng J 279:416–424. https://doi.org/10.1016/j.cej.2015.05.042

    Article  CAS  Google Scholar 

  40. Dippong T, Levei EA, Cadar O et al. (2017) Size and shape-controlled synthesis and characterization of CoFe2O4 nanoparticles embedded in a PVA-SiO2 hybrid matrix. J Anal Appl Pyrolysis 128:121–130. https://doi.org/10.1016/j.jaap.2017.10.018

    Article  CAS  Google Scholar 

  41. Hashemi SM, Hasani S, Jahanbani Ardakani K, Davar F (2019) The effect of simultaneous addition of ethylene glycol and agarose on the structural and magnetic properties of CoFe2O4 nanoparticles prepared by the sol-gel auto-combustion method. J Magn Magn Mater 492:165714. https://doi.org/10.1016/j.jmmm.2019.165714

    Article  CAS  Google Scholar 

  42. Avazpour L, Zandi Khajeh MA, Toroghinejad MR, Shokrollahi H (2015) Synthesis of single-phase cobalt ferrite nanoparticles via a novel EDTA/EG precursor-based route and their magnetic properties. J Alloys Compd 637:497–503. https://doi.org/10.1016/j.jallcom.2015.03.041

    Article  CAS  Google Scholar 

  43. Yadav RS, Kuřitka I, Vilcakova J et al. (2017) Structural, magnetic, optical, dielectric, electrical and modulus spectroscopic characteristics of ZnFe2O4 spinel ferrite nanoparticles synthesized via honey-mediated sol-gel combustion method. J Phys Chem Solids 110:87–99. https://doi.org/10.1016/j.jpcs.2017.05.029

    Article  CAS  Google Scholar 

  44. Ghumare AB, Mane ML, Shirsath SE, Lohar KS (2018) Role of pH and sintering temperature on the properties of tetragonal–cubic phases composed copper ferrite nanoparticles. J Inorg Organomet Polym Mater 28:2612–2619. https://doi.org/10.1007/s10904-018-0927-3

    Article  CAS  Google Scholar 

  45. Caldeira LE, Guaglianoni WC, Venturini J et al. (2020) Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceram Int 46:2465–2472. https://doi.org/10.1016/j.ceramint.2019.09.240

    Article  CAS  Google Scholar 

  46. Bhosale RR, Kumar A, Almomani F, Alxneit I (2016) Propylene oxide assisted sol-gel synthesis of zinc ferrite nanoparticles for solar fuel production. Ceram Int 42:2431–2438. https://doi.org/10.1016/j.ceramint.2015.10.043

    Article  CAS  Google Scholar 

  47. Shen SY, Zheng H, Zheng P et al. (2018) Microstructure, magnetic properties of hexagonal barium ferrite powder based on calcination temperature and holding time. Rare Met. https://doi.org/10.1007/s12598-018-1153-4

  48. Anila I, Mathew MJ (2019) Influence of pH on structural and magnetic properties of nanocrystalline cobalt ferrites synthesized by sol–gel method. In: AIP Conference Proceedings. 2162:020077. https://doi.org/10.1063/1.5130287

  49. Sajjia M, Oubaha M, Prescott T, Olabi AG (2010) Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J Alloys Compd 506:400–406. https://doi.org/10.1016/j.jallcom.2010.07.015

    Article  CAS  Google Scholar 

  50. Ansari F, Sobhani A, Salavati-Niasari M (2018) Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J Colloid Interface Sci 514:723–732. https://doi.org/10.1016/j.jcis.2017.12.083

    Article  CAS  Google Scholar 

  51. Zhang W, Sun A, Zhao X et al. (2020) Structural and magnetic properties of Ni–Cu–Co ferrites prepared from sol-gel auto combustion method with different complexing agents. J Alloys Compd 816:152501. https://doi.org/10.1016/j.jallcom.2019.152501

    Article  CAS  Google Scholar 

  52. Mariosi FR, Venturini J, da Cas Viegas A, Bergmann CP (2020) Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications. Ceram Int 46:2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266

    Article  CAS  Google Scholar 

  53. Imanipour P, Hasani S, Seifoddini A et al. (2020) The possibility of vanadium substitution on Co lattice sites in CoFe2O4 synthesized by sol–gel autocombustion method. J Sol-Gel Sci Technol 95:157–167. https://doi.org/10.1007/s10971-020-05316-w

    Article  CAS  Google Scholar 

  54. Imanipour P, Hasani S, Afshari M et al. (2020) The effect of divalent ions of zinc and strontium substitution on the structural and magnetic properties on the cobalt site in cobalt ferrite. J Magn Magn Mater 510:166941. https://doi.org/10.1016/j.jmmm.2020.166941

    Article  CAS  Google Scholar 

  55. Ashour AH, El-Batal AI, Maksoud MIAA et al. (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40:141–151. https://doi.org/10.1016/j.partic.2017.12.001

    Article  CAS  Google Scholar 

  56. Venturini J, Zampiva RYS, Arcaro S, Bergmann CP (2018) Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: Influence of additives on their stoichiometry and magnetic properties. Ceram Int 44:12381–12388. https://doi.org/10.1016/j.ceramint.2018.04.026

    Article  CAS  Google Scholar 

  57. Afshari M, Isfahani AR, Hasani S et al. (2019) Effect of apple cider vinegar agent on the microstructure, phase evolution, and magnetic properties of CoFe2O4 MNPs. Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.13224

  58. Rouhani AR, Esmaeil-Khanian AH, Davar F, Hasani S (2018) The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe2O4 nanoparticles prepared by sol-gel autocombustion method. Int J Appl Ceram Technol 15:758–765. https://doi.org/10.1111/ijac.12832

    Article  CAS  Google Scholar 

  59. Hunyek A, Sirisathitkul C, Mahaphap C et al. (2017) Sago starch: chelating agent in sol-gel synthesis of cobalt ferrite nanoparticles. J Aust Ceram Soc 53:173–176. https://doi.org/10.1007/s41779-017-0022-1

    Article  CAS  Google Scholar 

  60. Tian X, Zhou T, Wen J et al. (2020) Egg albumin assisted sol-gel synthesis of Eu3+ doped SnO2 phosphor for temperature sensing. Mater Res Bull 129:110882. https://doi.org/10.1016/j.materresbull.2020.110882

    Article  CAS  Google Scholar 

  61. Luxmi V, Kumar A (2019) Enhanced photocatalytic performance of m-WO3 and m-Fe-doped WO3 cuboids synthesized via sol-gel approach using egg albumen as a solvent. Mater Sci Semicond Process 104:104690. https://doi.org/10.1016/j.mssp.2019.104690

    Article  CAS  Google Scholar 

  62. Tian X, Lian S, Wen J et al. (2019) Microwave/starch-assisted sol-gel synthesis and photoluminescence of Eu3+-doped α-Al2O3 micro/nano-biscuits. J Lumin 207:301–309. https://doi.org/10.1016/j.jlumin.2018.10.068

    Article  CAS  Google Scholar 

  63. Sun J, Wang Y, Zhang Y, et al. (2019) Egg albumin-assisted hydrothermal synthesis of Co3O4 quasi-cubes as superior electrode material for supercapacitors with excellent performances. Nanoscale Res Lett 14. https://doi.org/10.1186/s11671-019-3172-y

  64. Manikandan A, Sridhar R, Arul Antony S, Ramakrishna S (2014) A simple aloe vera plant-extracted microwave and conventional combustion synthesis: Morphological, optical, magnetic and catalytic properties of CoFe2O4 nanostructures. J Mol Struct 1076:188–200. https://doi.org/10.1016/j.molstruc.2014.07.054

    Article  CAS  Google Scholar 

  65. Manju BG, Raji P (2018) Synthesis and magnetic properties of nano-sized Cu0.5Ni0.5Fe2O4 via citrate and aloe vera: A comparative study. Ceram Int 44:7329–7333. https://doi.org/10.1016/j.ceramint.2018.01.201

    Article  CAS  Google Scholar 

  66. Phumying S, Labuayai S, Swatsitang E et al. (2013) Nanocrystalline spinel ferrite (MFe2O4, M = Ni, Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater Res Bull 48:2060–2065. https://doi.org/10.1016/j.materresbull.2013.02.042

    Article  CAS  Google Scholar 

  67. Kombaiah K, Vijaya JJ, Kennedy LJ et al. (2018) Okra extract-assisted green synthesis of CoFe2O4 nanoparticles and their optical, magnetic, and antimicrobial properties. Mater Chem Phys 204:410–419. https://doi.org/10.1016/j.matchemphys.2017.10.077

    Article  CAS  Google Scholar 

  68. Ghanbari M, Davar F, Shalan AE (2021) Effect of rosemary extract on the microstructure, phase evolution, and magnetic behavior of cobalt ferrite nanoparticles and its application on anti-cancer drug delivery. Ceram Int 47:9409–9417. https://doi.org/10.1016/j.ceramint.2020.12.073

    Article  CAS  Google Scholar 

  69. Gingasu D, Mindru I, Patron L, et al. (2016) Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential. J Nanomater 2016. https://doi.org/10.1155/2016/2106756

  70. Iatridi Z, Vamvakidis K, Tsougos I et al. (2016) Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications. ACS Appl Mater Interfaces 8:35059–35070. https://doi.org/10.1021/acsami.6b13161

    Article  CAS  Google Scholar 

  71. Amiri M, Salavati-Niasari M, Akbari A, Gholami T (2017) Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: herbal and green sol-gel autocombustion synthesis. Int J Hydrog Energy 42:24846–24860. https://doi.org/10.1016/j.ijhydene.2017.08.077

    Article  CAS  Google Scholar 

  72. Proveti JRC, Porto PSS, Muniz EP et al. (2015) Sol–gel proteic method using orange albedo pectin for obtaining cobalt ferrite particles. J Sol-Gel Sci Technol 75:31–37. https://doi.org/10.1007/s10971-015-3671-y

    Article  CAS  Google Scholar 

  73. Muniz EP, de Assunção LSD, de Souza LM et al. (2020) On cobalt ferrite production by sol-gel from orange fruit residue by three related procedures and its application in oil removal. J Clean Prod 265:121712. https://doi.org/10.1016/j.jclepro.2020.121712

    Article  CAS  Google Scholar 

  74. Ansari F, Sobhani A, Salavati-Niasari M (2016) Green synthesis of magnetic chitosan nanocomposites by a new sol-gel auto-combustion method. J Magn Magn Mater 410:27–33. https://doi.org/10.1016/j.jmmm.2016.03.014

    Article  CAS  Google Scholar 

  75. Erhardt CS, Caldeira LE, Venturini J et al. (2020) Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 nanoparticles. Ceram Int 46:12759–12766. https://doi.org/10.1016/j.ceramint.2020.02.044

    Article  CAS  Google Scholar 

  76. Yadav RS, Havlica J, Hnatko M et al. (2015) Magnetic properties of Co1-xZnxFe2O4spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling. J Magn Magn Mater 378:190–199. https://doi.org/10.1016/j.jmmm.2014.11.027

    Article  CAS  Google Scholar 

  77. Yadav RS, Havlica J, Masilko J et al. (2016) Impact of Nd3+ in CoFe2O4 spinel ferrite nanoparticles on cation distribution, structural and magnetic properties. J Magn Magn Mater 399:109–117. https://doi.org/10.1016/j.jmmm.2015.09.055

    Article  CAS  Google Scholar 

  78. Gangulibabu, Bhuvaneswari D, Kalaiselvi N (2013) Comparison of corn starch-assisted sol-gel and combustion methods to prepare LiMnxCoyNizO2 compounds. J Solid State Electrochem 17:9–17. https://doi.org/10.1007/s10008-012-1851-z

    Article  CAS  Google Scholar 

  79. Lima DR, Jiang N, Liu X et al. (2017) Employing calcination as a facile strategy to reduce the cytotoxicity in CoFe2O4 and NiFe2O4 Nanoparticles. ACS Appl Mater Interfaces 9:39830–39838. https://doi.org/10.1021/acsami.7b13103

    Article  CAS  Google Scholar 

  80. Yadav RS, Kuřitka I, Vilcakova J et al. (2017) Structural, dielectric, electrical and magnetic properties of CuFe2O4 nanoparticles synthesized by honey mediated sol–gel combustion method and annealing effect. J Mater Sci Mater Electron 28:6245–6261. https://doi.org/10.1007/s10854-016-6305-4

    Article  CAS  Google Scholar 

  81. Yadav RS, Kuřitka I, Vilcakova J et al. (2017) Structural, magnetic, dielectric, and electrical properties of NiFe2O4 spinel ferrite nanoparticles prepared by honey-mediated sol-gel combustion. J Phys Chem Solids 107:150–161. https://doi.org/10.1016/j.jpcs.2017.04.004

    Article  CAS  Google Scholar 

  82. Alshehri SM, Alhabarah AN, Ahmed J et al. (2018) An efficient and cost-effective tri-functional electrocatalyst based on cobalt ferrite embedded nitrogen doped carbon. J Colloid Interface Sci 514:1–9. https://doi.org/10.1016/j.jcis.2017.12.020

    Article  CAS  Google Scholar 

  83. Tian X, Lian S, Wen J et al. (2018) Egg albumin-assisted sol–gel synthesis and photo-catalytic activity of SnO2 micro/nano-structured biscuits. J Sol-Gel Sci Technol 85:402–412. https://doi.org/10.1007/s10971-017-4547-0

    Article  CAS  Google Scholar 

  84. Ahamad T, Ruksana, Naushad M et al. (2019) Fabrication of highly porous adsorbent derived from bio-based polymer metal complex for the remediation of water pollutants. J Clean Prod 208:1317–1326. https://doi.org/10.1016/j.jclepro.2018.10.174

    Article  CAS  Google Scholar 

  85. Gabal MA (2010) Structural and magnetic properties of nano-sized Cu-Cr ferrites prepared through a simple method using egg white. Mater Lett 64:1887–1890. https://doi.org/10.1016/j.matlet.2010.05.022

    Article  CAS  Google Scholar 

  86. Hou X, Feng J, Ren Y et al. (2010) Synthesis and adsorption properties of spongelike porous MnFe2O4. Colloids Surfaces A Physicochem Eng Asp 363:1–7. https://doi.org/10.1016/j.colsurfa.2010.03.016

    Article  CAS  Google Scholar 

  87. Hou X, Feng J, Liu X et al. (2011) Magnetic and high rate adsorption properties of porous Mn1-xZnxFe2O4 (0≤x≤0.8) adsorbents. J Colloid Interface Sci 353:524–529. https://doi.org/10.1016/j.jcis.2010.09.050

    Article  CAS  Google Scholar 

  88. Hou X, Feng J, Liu X et al. (2011) Synthesis of 3D porous ferromagnetic NiFe 2O 4 and using as novel adsorbent to treat wastewater. J Colloid Interface Sci 362:477–485. https://doi.org/10.1016/j.jcis.2011.06.070

    Article  CAS  Google Scholar 

  89. Geng B, Zhan F, Jiang H et al. (2008) Egg albumin as a nanoreactor for growing single-crystalline Fe 3O4 nanotubes with high yields. Chem Commun 5773–5775. https://doi.org/10.1039/b813071j

  90. Yan J, Wu G, Li L et al. (2010) Synthesis of uniform ti0 2 nanoparticles with egg albumen proteins as novel biotemplate. J Nanosci Nanotechnol 10:5767–5775. https://doi.org/10.1166/jnn.2010.2501

    Article  CAS  Google Scholar 

  91. Prakash T, Neri G, Ranjith Kumar E (2015) A comparative study of the synthesis of CdO nanoplatelets by an albumen-assisted isothermal evaporation method. J Alloys Compd 624:258–265. https://doi.org/10.1016/j.jallcom.2014.10.204

    Article  CAS  Google Scholar 

  92. Prakash T, Jayaprakash R, Raj DS et al. (2013) Sensing properties of ZnO nanoparticles synthesized by using albumen as a biotemplate for acetic acid monitoring in aqueous mixture. Sensors Actuators B Chem 176:560–568. https://doi.org/10.1016/j.snb.2012.09.011

    Article  CAS  Google Scholar 

  93. Khandekar MS, Kambale RC, Patil JY et al. (2011) Effect of calcination temperature on the structural and electrical properties of cobalt ferrite synthesized by combustion method. J Alloys Compd 509:1861–1865. https://doi.org/10.1016/j.jallcom.2010.10.073

    Article  CAS  Google Scholar 

  94. Srinivasa Rao K, Ranga Nayakulu SV, Chaitanya Varma M et al. (2018) Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol-gel method. J Magn Magn Mater 451:602–608. https://doi.org/10.1016/j.jmmm.2017.11.069

    Article  CAS  Google Scholar 

  95. Emamian HR, Honarbakhsh-raouf A, Ataie A, Mirzaee O (2015) Characterization of mesoporous cobalt ferrite foam fabricated from sol-gel-derived nanoparticles. J Supercond Nov Magn 28:2831–2838. https://doi.org/10.1007/s10948-015-3124-4

    Article  CAS  Google Scholar 

  96. Ferreira TAS, Waerenborgh JC, Mendonça MHRM et al. (2003) Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method. Solid State Sci 5:383–392. https://doi.org/10.1016/S1293-2558(03)00011-6

    Article  CAS  Google Scholar 

  97. Desai KR, Alone ST, Wadgane SR et al. (2021) X-ray diffraction based Williamson–Hall analysis and rietveld refinement for strain mechanism in Mg–Mn co-substituted CdFe2O4 nanoparticles. Phys B Condens Matter 614:413054. https://doi.org/10.1016/j.physb.2021.413054

    Article  CAS  Google Scholar 

  98. Li X, Sun Y, Zong Y et al. (2020) Size-effect induced cation redistribution on the magnetic properties of well-dispersed CoFe2O4 nanocrystals. J Alloys Compd 841:155710. https://doi.org/10.1016/j.jallcom.2020.155710

    Article  CAS  Google Scholar 

  99. Monisha P, Priyadharshini P, Gomathi SS, Pushpanathan K (2021) Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. J Phys Chem Solids 148:109654. https://doi.org/10.1016/j.jpcs.2020.109654

    Article  CAS  Google Scholar 

  100. Vitor PAM, Venturini J, da Cunha JBM, Bergmann CP (2021) The influence of cation distribution on the magnetic properties of mixed Co1-yNiyFe2O4 nanoferrites produced by the sol-gel method. J Alloys Compd 851:156799. https://doi.org/10.1016/j.jallcom.2020.156799

    Article  CAS  Google Scholar 

  101. Dippong T, Levei EA, Cadar O et al. (2019) Effect of nickel content on structural, morphological and magnetic properties of Ni Co1-Fe2O4/SiO2 nanocomposites. J Alloys Compd 786:330–340. https://doi.org/10.1016/j.jallcom.2019.01.363

    Article  CAS  Google Scholar 

  102. Shyamaldas, Bououdina M, Manoharan C (2020) Dependence of structure/morphology on electrical/magnetic properties of hydrothermally synthesised cobalt ferrite nanoparticles. J Magn Magn Mater 493:165703. https://doi.org/10.1016/j.jmmm.2019.165703

    Article  CAS  Google Scholar 

  103. Stoner EC EP, Wohlfarth (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Philos Trans R Soc London Ser A Math Phys Sci 240:599–642. https://doi.org/10.1098/rsta.1948.0007

    Article  Google Scholar 

Download references

Acknowledgements

The authors of the article thank the financial support of the Yazd University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hasani.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemi, S.M., Ataollahi, Z., Hasani, S. et al. Synthesis of the cobalt ferrite magnetic nanoparticles by sol–gel auto-combustion method in the presence of egg white (albumin). J Sol-Gel Sci Technol 106, 23–36 (2023). https://doi.org/10.1007/s10971-023-06073-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06073-2

Keywords

Navigation