Skip to main content
Log in

A detailed study of the mesoporous structure formation in the silica monolith with interconnected macropores

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, the phenomena occurring at the stage of solvent exchange treatment during the synthesis of porous silica monoliths are described using high-resolution scanning microscopy. Initially, the solution in the swollen gel network and macropores contains the tetraethoxysilane hydrolysis products, the structure-forming agent polyethylene oxide, and nitric acid. Solvent exchange treatment with a more basic solvent leads to the leaching of polyethylene oxide and promotes the polycondensation process. This results in the increase in crosslinking density, the decrease in the elasticity, and the swelling degree of the gel. The release of excess solvent in the dense gel leads to its fragmentation. The formed non-spherical fragments under basic conditions are immediately crosslinked within the skeleton of macropores. Therefore, the porous monolith macrostructure and the integrity of the block are preserved. This process is rather rapid. With further treatment, there is a slow dissolution and reprecipitation of silica from the particle surface resulting in their decrease and in an increase in the size and volume of mesopores formed between them.

Graphical Abstract

Mesoporous structure formation.

Highlights

  • Formation of mesopores occurs due to skeleton fragmentation and crosslinking of fragments

  • Fragmentation occurs with an increase in crosslink density in a gel that is not able to relax

  • Fragments are rapidly connected by siloxane bonds which preserves the integrity of the sample

  • During drying and heat treatment, a crust is formed on the surface of macropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Galarneau A, Abid Z, Said B, Didi Y, Szymanska K, Jarzębski A, Tancret F, Hamaizi H, Bengueddach A, Renzo F, Fajula F (2016) Synthesis and textural characterization of mesoporous and meso-/macroporous silica monoliths obtained by spinodal decomposition. Inorganics 4:9. https://doi.org/10.3390/inorganics4020009

    Article  CAS  Google Scholar 

  2. Khoo HT, Leow CH (2021) Advancements in the preparation and application of monolithic silica columns for efficient separation in liquid chromatography. Talanta 224:121777. https://doi.org/10.1016/j.talanta.2020.121777

    Article  CAS  Google Scholar 

  3. Sun M-H, Huang S-Z, Chen L-H, Li Y, Yang X-Y, Yuan Z-Y, Su B-L (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem Soc Rev 45:3479–3563. https://doi.org/10.1039/c6cs00135a

    Article  CAS  Google Scholar 

  4. Szymańska K, Ciemięga A, Maresz K, Pudło W, Malinowski J, Mrowiec-Białoń J, Jarzębski AB (2021) Catalytic functionalized structured monolithic micro-/mesoreactors: engineering, properties, and performance in flow synthesis: an overview and guidelines. Front Chem Eng 3:68. https://doi.org/10.3389/fceng.2021.789102

    Article  Google Scholar 

  5. Sebai W, Ahmad S, Belleville M-P, Boccheciampe A, Chaurand P, Levard C, Brun N, Galarneau A, Sanchez-Marcano J (2022) Biocatalytic elimination of pharmaceutics found in water with hierarchical silica monoliths in continuous flow. Front Chem Eng 4:62. https://doi.org/10.3389/fceng.2022.823877

    Article  Google Scholar 

  6. Liu F, Feng D, Yang H, Guo X (2020) Preparation of macroporous transition metal hydroxide monoliths via a sol-gel process accompanied by phase separation. Sci Rep. 10(10):4331. https://doi.org/10.1038/s41598-020-61195-9

    Article  CAS  Google Scholar 

  7. Salameh C, Nogier J-F, Launay F, Boutros M (2015) Dispersion of colloidal TiO2nanoparticles on mesoporous materialstargeting photocatalysis applications. Catal Today 257:257–40. https://doi.org/10.1016/j.cattod.2015.03.025

    Article  CAS  Google Scholar 

  8. Nakanishi K, Soga N (1991) Phase separation in gelling silica–organic polymer solution: systems containing poly (sodium styrenesulfonate). JACerS 74:2518–2530. https://doi.org/10.1111/j.1151-2916.1991.tb06794.x

    Article  CAS  Google Scholar 

  9. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112. https://doi.org/10.1023/A:1009627216939

    Article  CAS  Google Scholar 

  10. Vodorezova OY, Lapin IN, Izaak TI (2020) Formation of the open-cell foam structures in tetraethoxysilane-based gelling systems. J Sol-Gel Sci Technol 94:384–392. https://doi.org/10.1007/s10971-020-05244-9

    Article  CAS  Google Scholar 

  11. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779. https://doi.org/10.1016/S0079-6700(00)00015-0

    Article  CAS  Google Scholar 

  12. Yang X-Y, Chen L-H, Li Y, Rooke JC, Sanchezc C, Su B-L (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46:481–558. https://doi.org/10.1039/c6cs00829a

    Article  CAS  Google Scholar 

  13. Triantafillidis C, Elsaesser MS, Hüsing N (2013) Chemical phase separation strategies towards silica monoliths with hierarchical porosity. Chem Soc Rev 42:3833. https://doi.org/10.1039/c3cs35345a

    Article  CAS  Google Scholar 

  14. Mrowiec-Białoń J, Jarzębski AB (2008) Fabrication and properties of silica monoliths with ultra large mesopores. Microporous mesoporous mat 109:429–435. https://doi.org/10.1016/j.micromeso.2007.05.041

    Article  CAS  Google Scholar 

  15. Estella J, Echeverría JC, Laguna M, Garrido JJ (2007) Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous mesoporous Mater 102:274–282. https://doi.org/10.1016/j.micromeso.2007.01.007

    Article  CAS  Google Scholar 

  16. Takahashi R, Nakanishi K, Soga N (1995) Small-angle X-ray scattering study of nanopore evolution of macroporous silica gel by solvent exchange. Faraday Discuss 40:863–873. https://doi.org/10.1021/ar600034p

    Article  CAS  Google Scholar 

  17. Nakanishi K, Tanaka N (2007) Sol–gel with phase separation. Hierarchically porous materials optimized for high-performance liquid chromatography separations. Acc Chem Res 40:863–873. https://doi.org/10.1021/ar600034p#

    Article  CAS  Google Scholar 

  18. Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shikata H, Soga N (2000) Formation of hierarchical pore structure in silica gel. J Sol-Gel Sci Technol 17:191–210. https://doi.org/10.1023/A:1008707804908

    Article  CAS  Google Scholar 

  19. Takahashi R, Nakanishi K, Soga N (2005) Insight on structural change in sol-gel-derived silica gel with aging under basic conditions for mesopore control. J Sol-Gel Sci Technol 33:159–167. https://doi.org/10.1007/s10971-005-5610-9

    Article  CAS  Google Scholar 

  20. Takahashi R, Nakanishi K, Soga N (1995) Effects of aging and solvent exchange on pore structure of silica gels with interconnected macropores. J Non-Cryst Solids. https://doi.org/10.1016/0022-3093(95)00203-0

  21. Gorbunova OV, Baklanova ON, Gulyaeva TI, Trenikhin MV, Drozdov VA (2014) Poly (ethylene glycol) as structure directing agent in sol–gel synthesis of amorphous silica. Microporous Mesoporous Mat 190:146–151. https://doi.org/10.1016/j.micromeso.2014.02.013

    Article  CAS  Google Scholar 

  22. Takahashi R, Nakanishi K, Soga N (2000) Aggregation behavior of alkoxide-derived silica in sol-gel process in presence of poly (ethylene oxide). J Sol-Gel Sci Technol 17:7–18. https://doi.org/10.1023/A:1008753718586

    Article  CAS  Google Scholar 

  23. Voronin EF, Gun’ko VM, Guzenko NV, Pakhlov EM, Nosach LV, Leboda R, Skubiszewska-Zięba J, Malysheva ML, Borysenko MV, Chuiko AA (2004) Interaction of poly (ethylene oxide) with fumed silica. J Colloid Interface Sci 279:326–340. https://doi.org/10.1016/j.jcis.2004.06.073

    Article  CAS  Google Scholar 

  24. Rubio J, Kitchener JA (1976) The mechanism of adsorption of poly (ethylene oxide) flocculant on silica. J Colloid Interface Sci 57:132–142. https://doi.org/10.1016/0021-9797(76)90182-X

    Article  CAS  Google Scholar 

  25. Serrano A, Martín del Campo J, Peco N, Rodriguez JF, Carmona M (2019) Influence of gelation step for preparing PEG–SiO2 shape-stabilized phase change materials by sol–gel method. J Sol-Gel Sci Technol 89:731–742. https://doi.org/10.1007/s10971-018-4866-9

    Article  CAS  Google Scholar 

  26. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1998) Structure design of double-pore silica and its application to HPLC. J Solgel. Sci Technol 13:163–169. https://doi.org/10.1023/A:1008644514849

    Article  CAS  Google Scholar 

  27. Shabanova NA, Sarkisov PD (2004) Fundamentals of sol-gel technology of nanodispersed silica [in Russian]. Academkniga, Moscow ISBN 5-94628-168-2

Download references

Acknowledgements

This work was carried out within the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (FSWM-2020-0037). The authors thank Dr. Mikhail Salaev (Tomsk State University) for language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Miskevich.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miskevich, O.Y., Serkova, A.N., Salanov, A.N. et al. A detailed study of the mesoporous structure formation in the silica monolith with interconnected macropores. J Sol-Gel Sci Technol 105, 748–757 (2023). https://doi.org/10.1007/s10971-023-06051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-023-06051-8

Keywords

Navigation