Skip to main content
Log in

Effect of Al3+doping on dielectric properties of cobalt ferrite nanoparticle for using in high frequency applications

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Aluminum doped cobalt ferrite nanoparticles(CoFe2–xAlxO4(x = 0.0 and 0.5)) were synthesized by wet chemical co-precipitation method. X-ray diffraction pattern confirmed the successful doping of the smaller cation of Al3+ and the single-phase cubic spinel structure of the prepared nanoparticles. The crystallite size of nanoparticles was examined ~25 nmusing X-ray diffraction data.The lattice parameter ‘a ’ also decreased by doping the Al3+cation. Two functional groups and fundamental peaks of calcined samples were identified byFourier-transform infrared spectroscopy in the range of 450–600 cm−1, these characteristic absorption bandsconfirmed the cubic spinel structure of prepared nanoparticles. Field emission electron microscopy images confirm the formation of nearly spherical ferrite nanoparticles with an average size ~25–30 nm that is in good agreement with XRD results. Magnetic hysteresis study at room temperature confirmed the ferrimagnetic nature of the prepared samples and the decrease in saturation magnetization (MS = 74–44 emu/g) and reduction in coercivity (HC = 627.8–539.4 Oe) due to doping the Al3+cation. Improved values of dielectric constant, low dielectric loss and resistivity were displayed by Al3+cation doped ferrite nanoparticles and has been measured at room temperature for frequency dependence in the range of 100 Hz–10 MHz using impedance analyzer. It is revealed strong dependence of dielectric parameters on frequency and Al3+ ion content. Doping the Al3+ cation was increasing the values of dielectric constant and dielectric loss for (CoFe2–xAlxO4(x = 0.0 and 0.5)) while decreases the electrical resistance of prepared nanoparticle. results explored the capability of the Al doped cobalt ferrite to be suitable for high frequency applications and magnetic memory devices.

Graphical Abstract

Highlights

  • Aluminum Cobalt ferrite nanoparticles are prepared by co precipitation method using sodium hydroxide as reactant agent.

  • Crystal size of the prepared nanoparticles is calculated by the XRD data ~25 nm and confirmed by FESEM spectroscopy techniques.

  • Magnetic hysteresis study confirmed the ferrimagnetic nature of Aluminum Cobalt ferrite nano particles.

  • Impedance spectroscopy analysis indicates the material to be suitable for memory device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm the absence of sharing data.

References

  1. Hassan A et al. (2015) Nanocrystalline Zn1− x Co0. 5xNi0. 5x Fe2O4 ferrites: fabrication via co-precipitation route with enhanced magnetic and electrical properties. J Magn Magn Mater 393:56–61

    Article  CAS  Google Scholar 

  2. Mustafa G et al. (2015) Influence of the divalent and trivalent ions substitution on the structural and magnetic properties of Mg0. 5− xCdxCo0. 5Cr0. 04TbyFe1. 96− yO4 ferrites prepared by sol–gel method. J Magn Magn Mater 387:147–154

    Article  CAS  Google Scholar 

  3. Hashim M et al. (2012) Structural, electrical and magnetic properties of Co–Cu ferrite nanoparticles. J Alloy Compd 518:11–18

    Article  CAS  Google Scholar 

  4. Reddy RA et al. (2022) Structural, electrical and magnetic properties of cobalt ferrite with Nd3+ doping. Rare Met 41(1):240–245

    Article  CAS  Google Scholar 

  5. Daruvuri HR et al. (2022) Effect on structural, dc electrical resistivity, and magnetic properties by the substitution of Zn2+ on Co-Cu nano ferrite. Inorg Chem Commun 143:109794

    Article  Google Scholar 

  6. Bhanu V et al. (2022) Neutron diffraction study and temperature variation of magnetic anisotropy in Bi substituted nickel ferrite. Ceramics Int 48(16):23300–23306. https://doi.org/10.1016/j.ceramint.2022.04.316

  7. Sivakumar K et al. (2022) Development of peanut husk carbon quantum dots and ferrite foil epoxy composite for EMI shielding at high frequency bands. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-03469-y

  8. Vurro F et al. (2022) Doped Ferrite Nanoparticles Exhibiting Self-Regulating Temperature as Magnetic Fluid Hyperthermia Antitumoral Agents, with Diagnostic Capability in Magnetic Resonance Imaging and Magnetic Particle Imaging. Cancers 14(20):5150

    Article  CAS  Google Scholar 

  9. Jermy BR et al. (2022) PEGylated green halloysite/spinel ferrite nanocomposites for pH sensitive delivery of dexamethasone: A potential pulmonary drug delivery treatment option for COVID-19. Appl Clay Sci 216:106333

    Article  CAS  Google Scholar 

  10. Dessai PPG, Singh AK, Verenkar V (2022) Mn doped Ni-Zn ferrite thick film as a highly selective and sensitive gas sensor for Cl2 gas with quick response and recovery time. Mater Res Bull 149:111699

    Article  Google Scholar 

  11. Mekuria T et al. (2020) Cobalt ferrite nanoparticle intercalated carbon nanotubes for a nanomagnetic ultrasensitive sensor of Cr-VI in water. AIP Adv 10(6):065134

    Article  CAS  Google Scholar 

  12. Gupta R, Kotnala R (2022) A review on current status and mechanisms of room-temperature magnetoelectric coupling in multiferroics for device applications. J Mater Sci 57(27):12710–12737

  13. Anukool W et al. (2022) Effects of aluminum substitution on the microstructure and magnetic properties of cobalt ferrites prepared by the co-precipitation precursor. Appl Phys A 128(8):1–10

    Article  Google Scholar 

  14. Wang A et al. (2022) Effects of sintering temperature on structural, magnetic and microwave absorption properties of Ni0. 5Zn0. 5Fe2O4 ferrites. J Magn Magn Mater 563:169958

    Article  CAS  Google Scholar 

  15. Dogan N et al. (2022) Manganese doped-iron oxide nanoparticles and their potential as tracer agents for magnetic particle imaging (MPI). J Magn Magn Mater 561:169654

    Article  CAS  Google Scholar 

  16. Velayutham L et al. (2022) Photocatalytic and Antibacterial Activity of CoFe2O4 Nanoparticles from Hibiscus rosa-sinensis Plant Extract. Nanomaterials 12(20):3668

    Article  CAS  Google Scholar 

  17. Meibodi FS, Soori E (2022) Synthesis of magnetic nanoparticles (Fe3O4) coated with fatty acids and surfactants and their application in demulsification of crude oil-in-water emulsions. J Appl Res Water Wastewater 9(1):76–84

    CAS  Google Scholar 

  18. Cho H, Lee N, Kim BH (2022) Synthesis of Highly Monodisperse Nickel and Nickel Phosphide Nanoparticles. Nanomaterials 12(18):3198

    Article  CAS  Google Scholar 

  19. Punia P et al. (2022) Synthesis and characterization of Ca substituted Ni-Zn nanoferrites-microstructural, magnetic and dielectric analysis. J Alloy Compd 928:167248

    Article  CAS  Google Scholar 

  20. Naik CC, Salker A (2022) Fractional substitution of Mn ions in cobalt-copper ferrite: Effect on its magnetic, dielectric and microstructural properties. Inorg Chem Commun 142:109684

    Article  CAS  Google Scholar 

  21. Malyshev A, Surzhikov A, Stary O (2022) Chemical homogeneity, microstructure and magnetic properties of LiTiZn ferrite ceramics doped with Al2O3 or ZrO2. J Alloy Compd 911:165005

    Article  CAS  Google Scholar 

  22. Shayestefar M et al. (2022) Optimization of the structural and magnetic properties of MnFe2O4 doped by Zn and Dy using Taguchi method. J Magn Magn Mater 541:168390

    Article  CAS  Google Scholar 

  23. Lu Y et al. (2022) Effect of Gd and Co contents on the microstructural, magneto-optical and electrical characteristics of cobalt ferrite (CoFe2O4) nanoparticles. Ceram Int 48(2):2782–2792

    Article  CAS  Google Scholar 

  24. Hölscher J et al. (2020) Magnetic Property Enhancement of Spinel Mn–Zn Ferrite through Atomic. Inorganic Chem 59(15):11184–11192

  25. Nairan A et al. (2022) Structural and temperature-dependent magnetic characteristics of Ho doped CoFe2O4 nanostructures. Ceram Int 48(21):32164–32172

    Article  CAS  Google Scholar 

  26. Desoky W et al. (2022) Exploring the impact of nickel doping on the structure and low-temperature magnetic features of cobalt nano-spinel ferrite. Appl Phys A 128(9):1–14

    Article  Google Scholar 

  27. Martinez-Vargas S et al. (2020) Enhancing the capacitance and tailoring the discharge times of flexible graphene supercapacitors with cobalt ferrite nanoparticles. Synth Met 264:116384

    Article  CAS  Google Scholar 

  28. Martinez-Luevanos A et al. (2017) Effect of cobalt on the electrochromic properties of NiO films deposited by spray pyrolysis. Appl Phys A 123(5):349

    Article  Google Scholar 

  29. Ati AA, Abdalsalam AH, Abbas HH (2022) Influence of annealing on structural, morphology, magnetic and optical properties of PLD deposited CuFe2O4 thin films. Inorganic Chem Commun 146:110072. https://doi.org/10.1016/j.inoche.2022.110072

  30. Shanigaram M, Kodam U, Noh J-S, Nam Y-W (2022) Cation distribution in MFe2O4 (M= Ni, Co): X-ray diffraction, electron spectroscopy, Raman, and magnetization studies. J Phys Chem Solids 171:111036. https://doi.org/10.1016/j.jpcs.2022.111036

  31. Mazrouei A, Saidi A (2018) Microstructure and magnetic properties of cobalt ferrite nano powder prepared by solution combustion synthesis. Mater Chem Phys 209:152–158

    Article  CAS  Google Scholar 

  32. Abdullah M, Hasany S, Amir Qureshi M, Hussain S (2022) Cost-Effective Synthesis of Cobalt Ferrite Nanoparticles by Sol-Gel Technique. In Mater Sci Forum. Trans Tech Publ Ltd.: Bäch SZ, Switzerland, 1067:213–219

  33. Li W et al. (2022) Comparison of copper and aluminum doped cobalt ferrate nanoparticles for improving biohydrogen production. Bioresour Technol 343:126078

    Article  CAS  Google Scholar 

  34. Abbas N et al. (2020) Aluminum-doped cobalt ferrite as an efficient photocatalyst for the abatement of methylene blue. Water 12(8):2285

    Article  CAS  Google Scholar 

  35. Aghav P et al. (2011) Effect of aluminum substitution on the structural and magnetic properties of cobalt ferrite synthesized by sol–gel auto combustion process. Phys B: Condens Matter 406(23):4350–4354

    Article  CAS  Google Scholar 

  36. Gabal M et al. (2013) Influence of Al-substitution on structural, electrical and magnetic properties of Mn–Zn ferrites nanopowders prepared via the sol–gel auto-combustion method. Polyhedron 57:105–111

    Article  CAS  Google Scholar 

  37. Gul I, Pervaiz E (2012) Comparative study of NiFe2− xAlxO4 ferrite nanoparticles synthesized by chemical co-precipitation and sol–gel combustion techniques. Mater Res Bull 47(6):1353–1361

    Article  CAS  Google Scholar 

  38. Shirtcliffe NJ et al. (2007) Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Mater Res Bull 42(2):281–287

    Article  CAS  Google Scholar 

  39. Luo H et al. (2012) Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J Magn Magn Mater 324(17):2602–2608

    Article  CAS  Google Scholar 

  40. Shim JH et al. (2006) Coexistence of ferrimagnetic and antiferromagnetic ordering in Fe-inverted zinc ferrite investigated by NMR. Phys Rev B 73(6):064404

    Article  Google Scholar 

  41. Joshi S et al. (2014) Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J Mol Struct 1076:55–62

    Article  CAS  Google Scholar 

  42. Ponce A et al. (2013) High coercivity induced by mechanical milling in cobalt ferrite powders. J Magn Magn Mater 344:182–187

    Article  CAS  Google Scholar 

  43. Ati AA et al. (2014) Structural and magnetic properties of Co–Al substituted Ni ferrites synthesized by co-precipitation method. J Mol Struct 1058:136–141

    Article  CAS  Google Scholar 

  44. Dabagh S et al. (2015) Effect of Cu–Al substitution on the structural and magnetic properties of Co ferrites. Mater Sci Semiconductor Process 33:1–8

    Article  CAS  Google Scholar 

  45. Xia A et al. (2013) Hydrothermal Mg1− xZnxFe2O4 spinel ferrites: Phase formation and mechanism of saturation magnetization. Mater Lett 105:199–201

    Article  CAS  Google Scholar 

  46. Ali R et al. (2014) Structural, magnetic and dielectric behavior of Mg1− xCaxNiyFe2− yO4 nano-ferrites synthesized by the micro-emulsion method. Ceram Int 40(3):3841–3846

    Article  CAS  Google Scholar 

  47. Oumezzine E et al. (2015) Structural, magnetic and magnetocaloric properties of Zn0. 6− xNixCu0. 4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method. Powder Technol 278:189–195

    Article  CAS  Google Scholar 

  48. Muthuselvam IP, Bhowmik R (2010) Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J Magn Magn Mater 322(7):767–776

    Article  Google Scholar 

  49. Priya AS, Geetha D, Kavitha N (2019) Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum 160:453–460

    Article  Google Scholar 

  50. Tan X et al. (2022) Insights on perovskite-type proton conductive membranes for hydrogen permeation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.08.244

  51. Dabagh S et al. (2018) Study of structural phase transformation and hysteresis behavior of inverse-spinel α-ferrite nanoparticles synthesized by co-precipitation method. Results Phys 8:93–98

    Article  Google Scholar 

  52. Sathiya Priya A, Geetha D, Kavitha N (2019) Effect of Al substitution on the structural, electric and impedance behavior of cobalt ferrite. Vacuum 160:453–460

    Article  CAS  Google Scholar 

  53. Waldron R (1955) Infrared spectra of ferrites. Phys Rev 99(6):1727

    Article  CAS  Google Scholar 

  54. Wahba AM, Mohamed MB (2014) Structural, magnetic, and dielectric properties of nanocrystalline Cr-substituted Co0. 8Ni0. 2Fe2O4 ferrite. Ceram Int, 40(4):6127–6135

    Article  Google Scholar 

  55. Dabagh S, Haris SA, Ertas YN (2022) Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J Cluster Sci. https://doi.org/10.1007/s10876-022-02373-9

  56. Rath C et al. (1999) Preparation and characterization of nanosize Mn–Zn ferrite. J Magn Magn Mater 202(1):77–84

    Article  CAS  Google Scholar 

  57. Rajendran M et al. (2001) Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232(1–2):71–83

    Article  CAS  Google Scholar 

  58. Gilani ZA et al. (2015) Impacts of neodymium on structural, spectral and dielectric properties of LiNi0. 5Fe2O4 nanocrystalline ferrites fabricated via micro-emulsion technique. Phys E: Low-dimensional Syst Nanostruct 73:169–174

    Article  CAS  Google Scholar 

  59. Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200(1–3):359–372

    Article  CAS  Google Scholar 

  60. Ahsan M, Khan F (2018) Structural and electrical properties of manganese doped cobalt ferrite nanoparticles. Mater Sci Nanotechnol 2(2):1. 2018. 9

    Google Scholar 

  61. Arifuzzaman M, Hossen MB (2020) Effect of Cu substitution on structural and electric transport properties of Ni-Cd nanoferrites. Results Phys 16:102824

    Article  Google Scholar 

  62. Gul IH, Maqsood A (2008) Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. J Alloy Compd 465(1):227–231

    Article  CAS  Google Scholar 

  63. Singh AK et al. (2002) Dielectric properties of Mn-substituted Ni–Zn ferrites. J Appl Phys 91(10):6626–6629

    Article  CAS  Google Scholar 

  64. Shitre A et al. (2002) X-ray diffraction and dielectric study of Co1− xCdxFe2− xCrxO4 ferrite system. Mater Lett 56(3):188–193

    Article  CAS  Google Scholar 

  65. Brockman FG, Dowling P, Steneck WG (1949) Anomalous behavior of the dielectric constant of a ferromagnetic ferrite at the magnetic curie point. Phys Rev 75(9):1440

    Article  CAS  Google Scholar 

  66. Mangalaraja R et al. (2002) Magnetic, electrical and dielectric behaviour of Ni0. 8Zn0. 2Fe2O4 prepared through flash combustion technique. J Magn Magn Mater 253(1–2):56–64

    Article  CAS  Google Scholar 

  67. Khatun N et al. (2021) Effect of sintering temperature on structural, magnetic, dielectric and optical properties of Ni–Mn–Zn ferrites. J Adv Dielectr 11(06):2150028

    Article  CAS  Google Scholar 

  68. Waghmare SP, Borikar DM, Rewatkar KG (2017) Impact of Al doping on structural and Magnetic Properties of Co-Ferrite. Mater Today: Proc 4(11, Part 3):11866–11872

    Google Scholar 

  69. Shao L et al. (2021) Microstructure, XPS and magnetic analysis of Al-doped nickel–manganese–cobalt ferrite. J Mater Sci: Mater Electron 32(15):20474–20488

    CAS  Google Scholar 

  70. Thang PD, Rijnders G, Blank DH (2005) Spinel cobalt ferrite by complexometric synthesis. J Magn Magn Mater 295(3):251–256

    Article  CAS  Google Scholar 

  71. Rafferty A, Prescott T, Brabazon D (2008) Sintering behaviour of cobalt ferrite ceramic. Ceram Int 34(1):15–21

    Article  CAS  Google Scholar 

  72. Coey JMD (1971) Noncollinear spin arrangement in ultrafine ferrimagnetic crystallites. Phys Rev Lett 27(17):1140

    Article  CAS  Google Scholar 

  73. Singhal S, Namgyal T, Bansal S, Chandra K (2010) Effect of Zn substitution on the magnetic properties of cobalt ferrite nano particles prepared via sol-gel route. J Electromagnetic Analys Appl 2(6):376–381

    CAS  Google Scholar 

  74. Cedeño-Mattei Y et al. (2008) Tuning of magnetic properties in cobalt ferrite nanocrystals. J Appl Phys 103(7):07E512-07E512-3

    Article  Google Scholar 

  75. Yadav RS et al. (2015) Magnetic Properties of Dysprosium-Doped Cobalt Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-combustion Method. J Superconductivity Novel Magnetism 28:2097–2107

  76. Yadav S et al. (2013) Structural, morphological, dielectrical, magnetic and impedance properties of Co 1− xMnxFe 2 O 4. J Alloy Compd 555:330–334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukool, W., El-Nabulsi, R.A. & Dabagh, S. Effect of Al3+doping on dielectric properties of cobalt ferrite nanoparticle for using in high frequency applications. J Sol-Gel Sci Technol 105, 405–415 (2023). https://doi.org/10.1007/s10971-022-06029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06029-y

Keywords

Navigation