Skip to main content

Advertisement

Log in

The morphology effect of embedded ZnO particles-based composite on flexible hybrid piezoelectric triboelectric nanogenerators for harvesting biomechanical energy

  • Original Paper: Devices based on sol-gel or hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Harvesting mechanical energy with a flexible and weightless device for self-power electronics has attracted many interests, nowadays. Hybrid nanogenerators by combining different power generating techniques enhance the performance of nanogenerators. Zinc oxide as a non-toxic ceramic has significant piezoelectric properties. In this paper, piezo/triboelectric hybrid nanogenerators based on three different shapes of ZnO nanoparticles are fabricated. The impact of the ellipse, rod, and pyramid-shaped ZnO particles encapsulated in PDMS matrix on the hybrid nanogenerators performance is investigated. XRD analysis shows pyramid-shaped ZnO particles have more crystals in the c-axis direction which is the piezoelectric effect direction in ZnO material. SEM results show the average size of particles from biggest to the smallest is rod, pyramid, and ellipse shapes, respectively. The maximum open-circuit voltage and short-circuit current are obtained from the pyramid and ellipse-shaped ZnO particle/PDMS composite hybrid nanogenerators with the value of 161 V and 29.8 μA, respectively. The maximum power density of the ellipse, rod, and pyramid-shaped ZnO particle/ PDMS composite-based hybrid nanogenerators is about 1.04, 0.75, and 0.6 Wm−2, respectively, occurred at 10 MΩ load resistance. In addition, different capacitors are charged by proposed nanogenerators demonstrating the PDMS embedded pyramid-shaped ZnO particles nanogenerator produced greater voltages in the capacitances. Consequently, the hybrid nanogenerators based on the ellipse and pyramid-shaped ZnO particle/ PDMS composites have better performances due to the structure and morphology properties of piezoelectric ZnO particles and can be utilized for the power source of milliwatt flexible portable devices.

Graphical Abstract

Highlights

  • Harvesting mechanical energy device for self-power electronics has attracted many interests.

  • The impact of three different shapes of ZnO particles encapsulated in the PDMS matrix on the performance of piezo/triboelectric hybrid nanogenerators was investigated.

  • Results demonstrated the maximum current and voltage values occurred in 2.5 wt.% wight ratio of ZnO particles in the PDMS matrix.

  • The maximum voltages obtained from HNGs based on the ellipse, rod, and pyramid-shaped ZnO particles were about 11.95, 10.6 and 16.1V.

  • The maximum power density under load resistance generated by the ellipse, rod, and pyramid-shaped ZnO particle composite-based HNGs was about 1.04, 0.75, and 0.6 Wm-2, respectively at 10 MΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kaltschmitt M, Streicher W, Wiese A (2007) Renewable energy: technology, economics and environment. Springer Science & Business Media

  2. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: A review. Renew Sustain energy Rev 15(3):1513–1524

    Article  Google Scholar 

  3. Sen S, Ganguly S (2017) Opportunities, barriers and issues with renewable energy development–A discussion. Renew Sustain Energy Rev 69:1170–1181

    Article  Google Scholar 

  4. Philibert C (2017) Renewable energy for industry. International Energy Agency, Paris

    Google Scholar 

  5. Mahapatra B, Patel KK, Patel PK (2021) A review on recent advancement in materials for piezoelectric/triboelectric nanogenerators. Mater Today: Proc 46:5523–5529

    CAS  Google Scholar 

  6. Zhang Y, Gao X, Wu Y, Gui J, Guo S, Zheng H, Wang ZL (2021) Self‐powered technology based on nanogenerators for biomedical applications. Wiley Online Library, pp 90–114

  7. Qiu C, Wu F, Shi Q, Lee C, Yuce MR (2019) Sensors and control interface methods based on triboelectric nanogenerator in IoT applications. IEEE Access 7:92745–92757

    Article  Google Scholar 

  8. Liu L, Shi Q, Ho JS, Lee C (2019) Study of thin film blue energy harvester based on triboelectric nanogenerator and seashore IoT applications. Nano Energy 66:104167

    Article  CAS  Google Scholar 

  9. He Q, Li X, Zhang J, Zhang H, Briscoe J (2021) P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy 85:105938

    Article  CAS  Google Scholar 

  10. Pu X, Liu M, Chen X, Sun J, Du C, Zhang Y, Zhai J, Hu W, Wang ZL (2017) Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 3(5):e1700015

    Article  Google Scholar 

  11. Xie M, Hisano K, Zhu M, Toyoshi T, Pan M, Okada S, Tsutsumi O, Kawamura S, Bowen C (2019) Flexible multifunctional sensors for wearable and robotic applications. Adv Mater Technol 4(3):1800626

    Article  Google Scholar 

  12. Shi Q, He T, Lee C (2019) More than energy harvesting–Combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57:851–871

    Article  CAS  Google Scholar 

  13. Stadlober B, Zirkl M, Irimia-Vladu M (2019) Route towards sustainable smart sensors: ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem Soc Rev 48(6):1787–1825

    Article  CAS  Google Scholar 

  14. Choi Y-M, Lee MG, Jeon Y (2017) Wearable biomechanical energy harvesting technologies. Energies 10(10):1483

    Article  Google Scholar 

  15. Sezer N, Koç M (2021) A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80:105567

    Article  CAS  Google Scholar 

  16. Kim DH, Dudem B, Yu JS (2018) High-performance flexible piezoelectric-assisted triboelectric hybrid nanogenerator via polydimethylsiloxane-encapsulated nanoflower-like ZnO composite films for scavenging energy from daily human activities. ACS Sustain Chem Eng 6(7):8525–8535

    Article  CAS  Google Scholar 

  17. Zhang X, Si Y, Mo J, Guo Z (2017) Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem Eng J 313:1152–1159

    Article  CAS  Google Scholar 

  18. Zhao Z, Dai Y, Dou SX, Liang J (2021) Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Mater Today Energy 20:100690

    Article  CAS  Google Scholar 

  19. Singh HH, Kumar D, Khare N (2021) A synchronous piezoelectric–triboelectric–electromagnetic hybrid generator for harvesting vibration energy. Sustain Energy Fuels 5(1):212–218

    Article  CAS  Google Scholar 

  20. Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano 7(8):7342–7351

    Article  CAS  Google Scholar 

  21. Xi Y, Guo H, Zi Y, Li X, Wang J, Deng J, Li S, Hu C, Cao X, Wang ZL (2017) Multifunctional TENG for blue energy scavenging and self‐powered wind‐speed sensor. Adv Energy Mater 7(12):1602397

    Article  Google Scholar 

  22. Feng Y, Zhang L, Zheng Y, Wang D, Zhou F, Liu W (2019) Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55:260–268

    Article  CAS  Google Scholar 

  23. Wang Y, Yang E, Chen T, Wang J, Hu Z, Mi J, Pan X, Xu M (2020) A novel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 78:105279

    Article  CAS  Google Scholar 

  24. Wu H, Wang Z, Zi Y (2021) Multi‐mode water‐tube‐based triboelectric nanogenerator designed for low‐frequency energy harvesting with ultrahigh volumetric charge density. Adv Energy Mater 11(16):2100038

    Article  CAS  Google Scholar 

  25. Wang J, Jiang Z, Sun W, Xu X, Han Q, Chu F (2022) Yoyo-ball inspired triboelectric nanogenerators for harvesting biomechanical energy. Appl Energy 308:118322

    Article  Google Scholar 

  26. Yun Y, La M, Cho S, Jang S, Choi JH, Ra Y, Kam D, Park SJ, Choi D (2021) High quality electret based triboelectric nanogenerator for boosted and reliable electrical output performance. Int J Precis Eng Manuf-Green Technol 8(1):125–137

    Article  Google Scholar 

  27. Cho S, Yun Y, Jang S, Ra Y, Choi JH, Hwang HJ, Choi D, Choi D (2020) Universal biomechanical energy harvesting from joint movements using a direction-switchable triboelectric nanogenerator. Nano Energy 71:104584

    Article  CAS  Google Scholar 

  28. Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano energy 1(2):328–334

    Article  CAS  Google Scholar 

  29. Li S, Wang J, Peng W, Lin L, Zi Y, Wang S, Zhang G, Wang ZL (2017) Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Advanced Energy. Materials 7(13):1602832

    Google Scholar 

  30. Bairagi S, Ali SW (2020) Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter 16(20):4876–4886

    Article  CAS  Google Scholar 

  31. Xu Z, Jin C, Cabe A, Escobedo D, Hao N, Trase I, Closson AB, Dong L, Nie Y, Elliott J (2020) Flexible energy harvester on a pacemaker lead using multibeam piezoelectric composite thin films. ACS Appl Mater Interfaces 12(30):34170–34179

    Article  CAS  Google Scholar 

  32. Shi K, Huang X, Sun B, Wu Z, He J, Jiang P (2019) Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 57:450–458

    Article  CAS  Google Scholar 

  33. Zhou H, Zhang Y, Qiu Y, Wu H, Qin W, Liao Y, Yu Q, Cheng H (2020) Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 168:112569

    Article  CAS  Google Scholar 

  34. Liu H, Lin X, Zhang S, Huan Y, Huang S, Cheng X (2020) Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J Mater Chem A 8(37):19631–19640

    Article  CAS  Google Scholar 

  35. Bafghi ZG, Manavizadeh N (2020) Low power ZnO nanorod-based ultraviolet photodetector: Effect of alcoholic growth precursor. Opt Laser Technol 129:106310

    Article  Google Scholar 

  36. Tsai SY, Chen CC, Huang J-M, Lai Y-S, Ku C-S, Lin C-M, Ko F-H (2021) Piezo-enhanced Thermoelectric Properties of Highly Preferred c-Axis ZnO Nanocrystal Films: Implications for Energy Harvesting. ACS Appl Nano Mater 4(9):9430–9439

    Article  CAS  Google Scholar 

  37. Chowdhury AR, Abdullah AM, Hussain I, Lopez J, Cantu D, Gupta SK, Mao Y, Danti S, Uddin MJ (2019) Lithium doped zinc oxide based flexible piezoelectric-triboelectric hybrid nanogenerator. Nano Energy 61:327–336

    Article  CAS  Google Scholar 

  38. Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL (2021) Piezoelectric Nanogenerators Derived Self‐Powered Sensors for Multifunctional Applications and Artificial Intelligence. Adv Funct Mater 31(33):2102983

    Article  CAS  Google Scholar 

  39. Yang Y, Pan H, Xie G, Jiang Y, Chen C, Su Y, Wang Y, Tai H (2020) Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring. Sens Actuators A: Phys 301:111789

    Article  CAS  Google Scholar 

  40. Rezaie S, Bafghi ZG, Manavizadeh N, Kordmahale SB (2021) Highly Sensitive Detection of Dissolved Gases in Transformer Oil With Carbon-Doped ZnO Nanotube: A DFT Study. IEEE Sens J 22(1):82–89

    Article  Google Scholar 

  41. Le AT, Ahmadipour M, Pung S-Y (2020) A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization techniques, performance enhancement and applications. J Alloy Compd 844:156172

    Article  CAS  Google Scholar 

  42. Ma J, Ren J, Jia Y, Wu Z, Chen L, Haugen NO, Huang H, Liu Y (2019) High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 62:376–383

    Article  CAS  Google Scholar 

  43. Farajollahi H, Bafghi ZG, Mohammadi E, Manavizadeh N, Salehi A (2020) Sensitivity enhancement of AZO-based ethanol sensor decorated by Au nano-islands. Curr Appl Phys 20(8):917–924

    Article  Google Scholar 

  44. Rao J, Chen Z, Zhao D, Yin Y, Wang X, Yi F (2019) Recent progress in self-powered skin sensors. Sensors 19(12):2763

    Article  CAS  Google Scholar 

  45. Afshari F, Golshan Bafghi Z, Manavizadeh N (2022) Unsophisticated one-step synthesis super hydrophilic self-cleaning coating based on ZnO nanosheets. Appl Phys A 128(1):1–9

    Article  Google Scholar 

  46. Hamid HMA, Çelik-Butler Z (2018) Characterization and performance analysis of Li-doped ZnO nanowire as a nano-sensor and nano-energy harvesting element. Nano Energy 50:159–168

    Article  CAS  Google Scholar 

  47. Hao N, Xu Z, Nie Y, Jin C, Closson AB, Zhang M, Zhang JXJ (2019) Microfluidics-enabled rational design of ZnO micro-/nanoparticles with enhanced photocatalysis, cytotoxicity, and piezoelectric properties. Chem Eng J 378:122222

    Article  CAS  Google Scholar 

  48. Zhang X, Le M-Q, Zahhaf O, Capsal J-F, Cottinet P-J, Petit L (2020) Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis. Mater Des 192:108783

    Article  CAS  Google Scholar 

  49. Qian Y, Kang DJ (2018) Poly (dimethylsiloxane)/ZnO nanoflakes/three-dimensional graphene heterostructures for high-performance flexible energy harvesters with simultaneous piezoelectric and triboelectric generation. ACS Appl Mater interfaces 10(38):32281–32288

    Article  CAS  Google Scholar 

  50. Shakthivel D, Dahiya AS, Mukherjee R, Dahiya R (2021) Inorganic semiconducting nanowires for green energy solutions. Curr Opin Chem Eng 34:100753

    Article  Google Scholar 

  51. Wang J, Qian S, Yu J, Zhang Q, Yuan Z, Sang S, Zhou X, Sun L (2019) Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing. Nanomaterials 9(9):1304

    Article  CAS  Google Scholar 

  52. Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee PS (2019) Extremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogenerator. Nat Commun 10(1):1–9

    Article  CAS  Google Scholar 

  53. Dong K, Peng X, Wang ZL (2020) Fiber/fabric‐based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32(5):1902549

    Article  CAS  Google Scholar 

  54. Kannan JA, Balasubramanian K (2020) Thermally influenced, optical and fluorescence properties of Zinc Oxide nanoparticles for glutathione sensing. Appl Phys A 126(8):1–11

    Article  Google Scholar 

  55. Markova-Velichkova M, Veleva S, Tumbalev V, Stoyanov L, Nihtianova D, Mladenov M, Raicheff R, Kovacheva D (2013) XRD and TEM characterization of the morphology of ZnO powders prepared by different methods. Bulg Chem Commun 45(4):427–433

  56. Wang X, Yang B, Liu J, Yang C (2017) A transparent and biocompatible single-friction-surface triboelectric and piezoelectric generator and body movement sensor. J Mater Chem A 5(3):1176–1183

    Article  CAS  Google Scholar 

  57. Nourafkan M, Mohammadi E, Manavizadeh N (2019) Influence of the ZnO nanostructures shape on piezoelectric energy harvesters performance. IEEE Trans Electron Devices 66(11):4989–4996

    Article  Google Scholar 

  58. Yang T, Pan H, Tian G, Zhang B, Xiong D, Gao Y, Yan C, Chu X, Chen N, Zhong S (2020) Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy 72:104706

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Manavizadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paydari, P., Manavizadeh, N., Hadi, A. et al. The morphology effect of embedded ZnO particles-based composite on flexible hybrid piezoelectric triboelectric nanogenerators for harvesting biomechanical energy. J Sol-Gel Sci Technol 105, 337–347 (2023). https://doi.org/10.1007/s10971-022-06019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06019-0

Keywords

Navigation