Skip to main content

Advertisement

Log in

Low temperature Al2O3 sol-gel coatings on neodymium iron boron sintered magnets: Study of adhesion and corrosion performance

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel alumina coatings have been deposited on neodymium-iron-boron magnets for corrosion protection. The coatings present a compact amorphous structure due to the low thermal treatment (500 °C) with a thickness ranging from 0.8 to 2 microns, a Vickers hardness of 10 GPa and good adhesion to the substrate, measured by scratch test, with a failure mode of tensile cracking and chipping. The coatings are effective in protecting the NdFeB magnets from corrosion with reduction of current density (i.e. 2.07 × 10−6 A/cm2 for 2dip sample) of one order of magnitude with respect to the neat sample (1.15 × 10−5 A/cm2).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hirosawa S, Nishino M, Miyashita S Perspectives for high-performance permanent magnets: applications, coercivity, and new materials, Adv Nat Sci Nanosci Nanotechnol 8.1, 2017, https://doi.org/10.1088/2043-6254/aa597c

  2. Ma BM, Herchenroeder JW, Smith B, Suda M, Brown DN, Chen Z (2002) Recent development in bonded NdFeB magnets. J Magn Magn Mater 239(1):418–423. https://doi.org/10.1016/S0304-8853(01)00609-6

    Article  CAS  Google Scholar 

  3. Lewis HL, Jimenez-Villacorta F (2013) Perspectives on permanent magnetic materials for energy conversion and power generation. Metall Mater Trans A 44:2

    Article  CAS  Google Scholar 

  4. Cygan DF, McNallan MJ (1995) Corrosion of NdFeB permanent magnets in humid environments at temperatures up to 150°C. J Magn Magn Mater 139(1):131–138. https://doi.org/10.1016/0304-8853(95)90037-3

    Article  CAS  Google Scholar 

  5. Kim AS (1989) Corrosion and corrosion protection of RE–Fe–B magnets. J Mater Eng 11(1):95–101

    Article  CAS  Google Scholar 

  6. Gutfleisch O (2000) Controlling the properties of high energy density permanent magnetic materials by different processing routes. J Phys D Appl Phys 33(17):R157

    Article  CAS  Google Scholar 

  7. Zhang K, Fan E, He J, Li X, Huang Y (2021) Long-term effects of electrochemical corrosion on magnetic properties of sintered NdFeB magnets. J Magn Magn Mater 538:168309. https://doi.org/10.1016/j.jmmm.2021.168309

    Article  CAS  Google Scholar 

  8. Yu LQ, Wen YH, Yan M (2004) Effects of Dy and Nb on the magnetic properties and corrosion resistance of sintered NdFeB. J Magn Magn Mater 283(2):353–356. https://doi.org/10.1016/j.jmmm.2004.06.006

    Article  CAS  Google Scholar 

  9. Pigliaru L, Paleari L, Bragaglia M, Nanni F, Ghidini T, Rinaldi M Poly-ether-ether-ketone—Neodymium-iron-boron bonded permanent magnets via fused filament fabrication, Synth Met, 279, 2021, https://doi.org/10.1016/j.synthmet.2021.116857

  10. Li Q, Gao H, Wang JP, Chen B (2009) Electroplating of anticorrosive Ni-TiO2 composite coatings on sintered NdFeB permanent magnets. Trans Inst Met Finish 87(3):149–154. https://doi.org/10.1179/174591909X438901

    Article  CAS  Google Scholar 

  11. Mao S, Yang H, Song Z, Li J, Ying H, Sun K (2011) Corrosion behaviour of sintered NdFeB deposited with an aluminium coating. Corros Sci 53(5):1887–1894. https://doi.org/10.1016/j.corsci.2011.02.006

    Article  CAS  Google Scholar 

  12. Chen J et al. (2020) Phosphating passivation of vacuum evaporated Al/NdFeB magnets boosting high anti-corrosion performances. Surf Coat Technol 399:126115. https://doi.org/10.1016/j.surfcoat.2020.126115

    Article  CAS  Google Scholar 

  13. Zhang LW, Xu JL, Chen J, Huang J, Luo JM Microstructure and corrosion resistance of AlCoCrFeNi high-entropy alloy coating on sintered NdFeB magnets prepared by HVOF spraying, J Magn Magn Mater, 551, 2022, https://doi.org/10.1016/j.jmmm.2022.169136

  14. Ali A, Ahmad A (2009) Corrosion protection of sintered NdFeB magnets by CAPVD Ti2N coating. Mater Corros 60(5):372–375. https://doi.org/10.1002/maco.200805132

    Article  CAS  Google Scholar 

  15. Taran A et al. (2019) Nanostructured zro2 ceramic pvd coatings on nd-fe-b permanent magnets. Nanotechnol Percept 15(1):13–20. https://doi.org/10.4024/N23TA18A.ntp.15.01

    Article  Google Scholar 

  16. Ali A, Ahmad A, Deen KM (2009) Multilayer ceramic coating for impeding corrosion of sintered NdFeB magnets. J Rare Earths 27(6):1003–1007. https://doi.org/10.1016/S1002-0721(08)60357-9

    Article  Google Scholar 

  17. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90(1):33–72. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  18. Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol - gel dip coating. Thin Solid Films 201:97–108

    Article  CAS  Google Scholar 

  19. Bragaglia M et al. (2019) Influence of organic modified silica coatings on the tribological properties of elastomeric compounds. Wear 434–435:1–9. https://doi.org/10.1016/j.wear.2019.202987

    Article  Google Scholar 

  20. Cacciotti I, Nanni F, Campaniello V, Lamastra FR (2014) Development of a transparent hydrorepellent modified SiO2 coatings for glazed sanitarywares. Mater Chem Phys 146(3):240–252. https://doi.org/10.1016/j.matchemphys.2014.03.005

    Article  CAS  Google Scholar 

  21. Beganskiene A, Sakirzanovas S, Kazadojev I, Melninkaitis A, Sirutkaitis V, Kareiva A (2007) Sol-gel derived antireflective coating with controlled thickness and reflective,”. Mater Sci 25(3):817–824

    CAS  Google Scholar 

  22. Masalski J, Gluszek J, Zabrzeski J, Nitsch K, Gluszek P (1999) Improvement in corrosion resistance of the 3161 stainless steel by means of Al2O3 coatings deposited by the sol-gel method. Thin Solid Films 349(1–2):186–190. https://doi.org/10.1016/S0040-6090(99)00230-8

    Article  CAS  Google Scholar 

  23. Aristia G, Hoa LQ, Nofz M, Sojref R, Bäßler R Study of al2o3 sol‐gel coatings on x20cr13 in artificial north german basin geothermal water at 150 °c, Coatings, 11, 5, 2021, https://doi.org/10.3390/coatings11050526

  24. Singh D, Saini A, Dhayal V, Agarwal DC (2019) Oxime-modified aluminum(III) isopropoxide: a promising sol–gel precursor for corrosion resistive nano-alumina coating on an aluminum alloy. Prot Met Phys Chem Surf 55(4):682–688. https://doi.org/10.1134/S2070205119040245

    Article  CAS  Google Scholar 

  25. Zhang S, Lee WE (2003) Improving the water-wettability and oxidation resistance of graphite using Al2O3/SiO2 sol-gel coatings,. J Eur Ceram Soc 23(8):1215–1221. https://doi.org/10.1016/S0955-2219(02)00284-4

    Article  CAS  Google Scholar 

  26. Yamaguchi N, Tadanaga K, Matsuda A, Minami T, Tatsumisago M (2005) Anti-reflective coatings of flowerlike alumina on various glass substrates by the sol-gel process with the hot water treatment. J Sol-Gel Sci Technol 33(1):117–120. https://doi.org/10.1007/s10971-005-6711-1

    Article  CAS  Google Scholar 

  27. Kobayashi Y, Ishizaka T, Kurokawa Y Preparation of alumina films by the sol-gel method, vol. 0, pp. 263–283, 2005

  28. Tadanaga K, Kitamuro K, Matsuda A, Minami T (2003) Formation of superhydrophobic alumina coating films with high transparency on polymer substrates by the sol-gel method. J Sol-Gel Sci Technol 26(1–3):705–708. https://doi.org/10.1023/A:1020785818687

    Article  CAS  Google Scholar 

  29. Jönsson B, Hogmark S (1984) Hardness measurements of thin films. Thin Solid Films 114(3):257–269. https://doi.org/10.1016/0040-6090(84)90123-8

    Article  Google Scholar 

  30. Haanappel VAC, van Corbach HD, Fransen T, Gellings PJ (1994) The pyrolytic decomposition of aluminium-tri-sec-butoxide during chemical vapour deposition of thin alumina films. Thermochim Acta 240:67–77. https://doi.org/10.1016/0040-6031(94)87029-2

    Article  CAS  Google Scholar 

  31. Sifontes ÁB et al. (2014) Preparation of functionalized porous nano-γ-Al2O3 powders employing colophony extract. Biotechnol Rep. 4(no. 1):21–29. https://doi.org/10.1016/j.btre.2014.07.001

    Article  Google Scholar 

  32. Feret FR, Roy D, Boulanger C (2000) Determination of alpha and beta alumina in ceramic alumina by X-ray diffraction. Spectrochim acta, Part B Spectrosc 55(7):1051–1061. https://doi.org/10.1016/S0584-8547(00)00225-1

    Article  Google Scholar 

  33. Musil J, Blažek J, Zeman P, Prokšová Š, Šašek M, Čerstvý R (2010) Thermal stability of alumina thin films containing γ-Al 2 O 3 phase prepared by reactive magnetron sputtering. Appl Surf Sci 257(3):1058–1062. https://doi.org/10.1016/j.apsusc.2010.07.107

    Article  CAS  Google Scholar 

  34. Nan H, Zhu L, Liu H, Li W (2015) Protection of NdFeB magnets by corrosion resistance phytic acid conversion film. Appl Surf Sci 355:1215–1221. https://doi.org/10.1016/j.apsusc.2015.07.167

    Article  CAS  Google Scholar 

  35. Akisanya AR, Fleck NA (1994) The edge cracking and decohesion of thin films. Int J Solids Struct 31(23):3175–3199. https://doi.org/10.1016/0020-7683(94)90094-9

    Article  Google Scholar 

  36. Wang D, Bierwagen GP (2009) Sol-gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  37. de AV, Braga C, do Lago DCB, Pimenta AR, de Senna LF (2019) “The influence of heat treatment of inorganic conversion coatings produced by sol-gel dip coating on the anticorrosive properties of alumina films deposited on steel substrate – Part I: Single conversion coatings. Surf Coat Technol 372:190–200. https://doi.org/10.1016/j.surfcoat.2019.05.040

    Article  CAS  Google Scholar 

  38. Zhang X, Honkanen M, Pore V, Levänen E, Mäntylä T (2009) Effect of heat treating gel films on the formation of superhydrophobic boehmite flaky structures on austenitic stainless steel. Ceram Int 35(4):1559–1564. https://doi.org/10.1016/j.ceramint.2008.08.010

    Article  CAS  Google Scholar 

  39. Krzak-Roś J et al. (2009) The effect of substrate roughness on the surface structure of TiO 2, SiO2, and doped thin films prepared by the sol-gel method. Acta Bioeng Biomech 11(2):21–29

    Google Scholar 

  40. Mellali M, Fauchais P, Grimaud A (1996) Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coatings. Surf Coat Technol 81(2–3):275–286. https://doi.org/10.1016/0257-8972(95)02540-5

    Article  CAS  Google Scholar 

  41. Fernández-Hernán JP, López AJ, Torres B, Rams J Influence of roughness and grinding direction on the thickness and adhesion of sol-gel coatings deposited by dip-coating on AZ31 magnesium substrates. A Landau–Levich equation revision, Surf Coatings Technol, 408, 2021, https://doi.org/10.1016/j.surfcoat.2020.126798

  42. Zhao H, Yu M, Liu J, Li S, Xue B, Liang M (2015) Effect of surface roughness on corrosion resistance of sol-gel coatings on AA2024-T3 alloy. J Electrochem Soc 162(14):C718–C724. https://doi.org/10.1149/2.0271514jes

    Article  CAS  Google Scholar 

  43. Chen H, Yang X, Sun L, Yu P, Zhang X, Luo L (2019) Effects of Ag on the magnetic and mechanical properties of sintered NdFeB permanent magnets. J Magn Magn Mater 485:49–53. https://doi.org/10.1016/j.jmmm.2019.04.071

    Article  CAS  Google Scholar 

  44. Nishiyama N et al. (2013) Transparent nanocrystalline bulk alumina obtained at 7.7 GPa and 800 ° C. Scr Mater 69(no. 5):362–365. https://doi.org/10.1016/j.scriptamat.2013.05.017

    Article  CAS  Google Scholar 

  45. Balcaen Y et al. (2011) Mechanical and barrier properties of MOCVD processed alumina coatings on Ti6Al4V titanium alloy. Surf Coat Technol 206(7):1684–1690. https://doi.org/10.1016/j.surfcoat.2011.09.056

    Article  CAS  Google Scholar 

  46. Phani AR, Santucci S (2006) Evaluation of structural and mechanical properties of aluminum oxide thin films deposited by a sol-gel process: Comparison of microwave to conventional anneal. J Non Cryst Solids 352(38–39):4093–4100. https://doi.org/10.1016/j.jnoncrysol.2006.06.013

    Article  CAS  Google Scholar 

  47. Ferré FG et al. Corrosion and radiation resistant nanoceramic coatings for lead fast reactors, Corros Sci 124, 2017, https://doi.org/10.1016/j.corsci.2017.05.011.

  48. Burnett PJ, Rickerby DS (1987) The relationship between hardness and scratch adhession. Thin Solid Films 154(1–2):403–416. https://doi.org/10.1016/0040-6090(87)90382-8

    Article  CAS  Google Scholar 

  49. Perry AJ (1983) Scratch adhesion testing of hard coatings. Thin Solid Films 107(2):167–180. https://doi.org/10.1016/0040-6090(83)90019-6

    Article  CAS  Google Scholar 

  50. Bull SJ (1991) Failure modes in scratch adhesion testing. Surf Coat Technol 50:25–32

    Article  CAS  Google Scholar 

  51. Bull SJ, Berasetegui EG (2006) An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol Int 39(2):99–114. https://doi.org/10.1016/j.triboint.2005.04.013

    Article  CAS  Google Scholar 

  52. Bragaglia M, Pascale V, Rinaldi M, Nanni F (2022) Silver electroless plating on 3D printed resins via stereolithography: A sustainable solution. Thin Solid Films 757:139417. https://doi.org/10.1016/j.tsf.2022.139417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Sisram s.p.a and Mr. Luigi Sonessa for providing the NdFeB magnets.

Author contributions

All authors contributed to the study conception and design. MB and FN were involved in planning and supervised the work. Material preparation, data collection and analysis were performed by MB, LP, LF and VS. The first draft of the manuscript was written by MB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Bragaglia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragaglia, M., Paleari, L., Fazi, L. et al. Low temperature Al2O3 sol-gel coatings on neodymium iron boron sintered magnets: Study of adhesion and corrosion performance. J Sol-Gel Sci Technol 106, 95–106 (2023). https://doi.org/10.1007/s10971-022-06007-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-06007-4

Keywords

Navigation