Skip to main content
Log in

Effect of photonic crystal film as support on enhancement of graphite-carbon nitride quantum dots sensitized Bi2MoO6 photocatalytic activity

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Photonic crystals (PCs) with slow photon effect and multiple scattering for its three-dimensional ordered structure have been applied to improve light utilization and enhance photocatalytic activity. A ternary-structured photocatalyst was prepared. Bi2MoO6 was first sensitized by graphite-carbon nitride quantum dots (g-CNQDs) by in situ coupling via a hydrothermal method. The best performance of Bi2MoO6/g-CNQDs was 3.56 times higher than that of Bi2MoO6. The introduction of g-CNQDs improved both the light absorption range and charge transfer efficiency for Bi2MoO6/g-CNQDs composites. Furthermore, because of the combination of the g-CNQDs with the Bi2MoO6 nanosheets, the separation efficiency of photogenerated carriers was improved and the recombination rate was greatly reduced. To further improve light utilization, SiO2 PCs were composited to the above Bi2MoO6/g-CNQDs by spin coating to obtain ternary-structured Bi2MoO6/g-CNQDs/SiO2 PCs. The effect of the photonic band gap (PBG) of PCs on photocatalytic activity was investigated, and the photocatalytic activity was highest when the PBG was located near the absorption peak of g-CNQDs at 464 nm, which was 5.56 times higher than that of pure Bi2MoO6. The farther the photonic PBG is away from the absorption edge of g-CNQDs, the lower the photocatalytic activity of the composite membranes. This work provides a way to construct multiple-structured photocatalysts with high photocatalytic activity and confirms that PCs with precisely tuned band gap will substantially enhance the activity of photocatalysts.

Graphical abstract

Highlights

  • A ternary-structured photocatalyst Bi2MoO6/g-CNQDs/SiO2 PCs was synthesized.

  • Light harvesting is enhanced and the separation efficiency of photogenerated carriers is improved.

  • The optimized Bi2MoO6/g-CNQDs/SiO2 PCs exhibit excellent photodegradation efficiency.

  • As-prepared composite film photocatalyst has excellent reproducibility and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D (2019) Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 119:3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  2. Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78. https://doi.org/10.1016/j.jenvman.2017.05.063

    Article  CAS  Google Scholar 

  3. Marinho BA, de Souza SMAGU, de Souza AAU, Hotza D (2021) Electrospun TiO2 nanofibers for water and wastewater treatment: a review. J Mater Sci 56:5428–5448. https://doi.org/10.1007/s10853-020-05610-6

    Article  CAS  Google Scholar 

  4. Ebrahimi M, Akhavan O (2022) Nanomaterials for photocatalytic degradations of analgesic, mucolytic and anti-biotic/viral/inflammatory drugs widely used in controlling SARS-CoV-2. Catalysts 12:667. https://doi.org/10.3390/catal12060667

    Article  CAS  Google Scholar 

  5. Yang JH, Wang DG, Han HX, Li C (2013) Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc Chem Res 46:1900–1909. https://doi.org/10.1021/ar300227e

    Article  CAS  Google Scholar 

  6. Rafiq A, Ikram M, Ali S, Niaz F, Khan M, Khan Q, Maqbool M (2021) Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J Ind Eng Chem 97:111–128. https://doi.org/10.1016/j.jiec.2021.02.017

    Article  CAS  Google Scholar 

  7. Som I, Roy M, Saha R (2020) Advances in nanomaterial-based water treatment approaches for photocatalytic degradation of water pollutants. ChemCatChem 12:3409–3433. https://doi.org/10.1002/cctc.201902081

    Article  CAS  Google Scholar 

  8. Basavarajappa PS, Patil SB, Ganganagappa N, Reddy KR, Raghu AV, Reddy CV (2020) Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int J Hydrog Energy 45:7764–7778. https://doi.org/10.1016/j.ijhydene.2019.07.241

    Article  CAS  Google Scholar 

  9. Mendoza-Mendoza E, Nunez-Briones AG, Garcia-Cerda LA, Peralta-Rodriguez RD, Montes-Luna AJ (2018) One-step synthesis of ZnO and Ag/ZnO heterostructures and their photocatalytic activity. Ceram Int 44:6176–6180. https://doi.org/10.1016/j.ceramint.2018.01.001

    Article  CAS  Google Scholar 

  10. Yang MJ, Li J, Ke GL, Liu BY, Dong FQ, Yang L, He HC, Zhou Y (2021) WO3 homojunction photoanode: Integrating the advantages of WO3 different facets for efficient water oxidation. J Energy Chem 56:37–45. https://doi.org/10.1016/j.jechem.2020.07.059

    Article  CAS  Google Scholar 

  11. Humayun M, Raziq F, Khan A, Luo W (2018) Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem Lett Rev 11:86–102. https://doi.org/10.1080/17518253.2018.1440324

    Article  CAS  Google Scholar 

  12. Zahid AH, Han QF (2021) A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs. Nanoscale 13:17687–17724. https://doi.org/10.1039/d1nr03187b

    Article  CAS  Google Scholar 

  13. Shokraiyan J, Jahed V, Rabbani M (2021) Study of photocatalytic activity of Bi2WO6 tire‐like microstructure. J Chin Chem Soc 68:1880–1886. https://doi.org/10.1002/jccs.202100176

    Article  CAS  Google Scholar 

  14. Bijanzad K, Tadjarodi A, Akhavan O, Khiavi MM (2016) Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates. Res Chem Intermed 42:2429–2447. https://doi.org/10.1007/s11164-015-2159-2

    Article  CAS  Google Scholar 

  15. Jia YL, Lin YH, Ma Y, Shi WB (2019) Fabrication of hollow Bi2MoO6 nanorods with efficient phpotocatalytic performance. Mater Lett 234:83–86. https://doi.org/10.1016/j.matlet.2018.09.081

    Article  CAS  Google Scholar 

  16. Wu XL, Ng YH, Wen XM, Chung HY, Wong RJ, Du Y, Dou SX, Amal R et al. (2018) Construction of a Bi2MoO6: Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chem Eng J 353:636–644. https://doi.org/10.1016/j.cej.2018.07.149

    Article  CAS  Google Scholar 

  17. Wang J, Sun YG, Wu CC, Cui Z, Rao PH (2019) Enhancing photocatalytic activity of Bi2MoO6 via surface co-doping with Ni2+ and Ti4+ ions. J Phys Chem Solids 129:209–216. https://doi.org/10.1016/j.jpcs.2019.01.014

    Article  CAS  Google Scholar 

  18. Shimodaira Y, Kato H, Kobayashi H, Kudo A (2006) Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J Phys Chem B 110:17790–17797. https://doi.org/10.1021/jp0622482

    Article  CAS  Google Scholar 

  19. Zhou L, Wang WZ, Zhang LS (2007) Ultrasonic-assisted synthesis of visible-light-induced Bi2MO6 (M = W, Mo) photocatalysts. J Mol Catal A Chem 268:195–200. https://doi.org/10.1016/j.molcata.2006.12.026

    Article  CAS  Google Scholar 

  20. Peng YH, Zhang Y, Tian FH, Zhang JQ, Yu JQ (2017) Structure tuning of Bi2MoO6 and their enhanced visible light photocatalytic performances. Crit Rev Solid State Mater Sci 42:347–372. https://doi.org/10.1080/10408436.2016.1200009

    Article  CAS  Google Scholar 

  21. Yin GL, Jia YL, Lin YH, Zhang CY, Zhu ZH, Ma Y (2022) A review on hierarchical Bi2MoO6 nanostructures for photocatalysis applications. N J Chem 46:906–918. https://doi.org/10.1039/d1nj04705a

    Article  CAS  Google Scholar 

  22. Xing YX, Gao XC, Ji GF, Liu ZL, Du CF (2018) Synthesis of carbon doped Bi2MoO6 for enhanced photocatalytic performance and tumor photodynamic therapy efficiency. Appl Surf Sci 465:369–382. https://doi.org/10.1016/j.apsusc.2018.09.200

    Article  CAS  Google Scholar 

  23. Di J, Xia JX, Ji MX, Li HP, Xu H, Li HM, Chen R (2015) The synergistic role of carbon quantum dots for the improved photocatalytic performance of Bi2MoO6. Nanoscale 7:11433–11443. https://doi.org/10.1039/C5NR01350J

    Article  CAS  Google Scholar 

  24. Kandi D, Martha S, Thirumurugan A, Parida KM (2017) CdS QDs-decorated self-doped γ-Bi2MoO6: a sustainable and versatile photocatalyst toward photoreduction of Cr (VI) and degradation of phenol. ACS Omega 2:9040–9056. https://doi.org/10.1021/acsomega.7b01250

    Article  CAS  Google Scholar 

  25. Li H, Zhang TX, Pan C, Pu CC, Hu Y, Hu XY, Liu EZ, Fan J (2017) Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities. Appl Surf Sci 391:303–310. https://doi.org/10.1016/j.apsusc.2016.06.167

    Article  CAS  Google Scholar 

  26. Han G, Li DY, Zheng YF, Song XC (2018) Enhanced visible-light-responsive photocatalytic properties of Bi2MoO6-BiOCl nanoplate composites. J Nanosci Nanotechnol 18:5575–5581. https://doi.org/10.1166/jnn.2018.15379

    Article  CAS  Google Scholar 

  27. Hu TP, Yang Y, Dai K, Zhang JF, Liang CH (2018) A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Appl Surf Sci 456:473–481. https://doi.org/10.1016/j.apsusc.2018.06.186

    Article  CAS  Google Scholar 

  28. Xiao K, Huang HW, Tian N, Zhang YH (2016) Mixed-calcination synthesis of Bi2MoO6/g-C3N4 heterojunction with enhanced visible-light-responsive photoreactivity for RhB degradation and photocurrent generation. Mater Res Bull 83:172–178. https://doi.org/10.1016/j.materresbull.2016.05.016

    Article  CAS  Google Scholar 

  29. Tian YL, Cheng FX, Zhang X, Yan F, Zhou BC, Chen Z, Liu JY, Xi FN et al. (2014) Solvothermal synthesis and enhanced visible light photocatalytic activity of novel graphitic carbon nitride–Bi2MoO6 heterojunctions. Powder Technol 267:126–133. https://doi.org/10.1016/j.powtec.2014.07.021

    Article  CAS  Google Scholar 

  30. Kim JH, Ma A, Jung H, Kim HY, Choe HR, Kim YH, Nam KM (2019) In situ growth of the Bi2S3 nanowire array on the Bi2MoO6 film for an improved photoelectrochemical performance. ACS Omega 4:17359–17365. https://doi.org/10.1021/acsomega.9b02111

    Article  CAS  Google Scholar 

  31. He L, Lv H, Ma LF, Li WN, Si JQ, Ikram M, Ullah M, Wu HY et al. (2020) Controllable synthesis of intercalated γ-Bi2MoO6/graphene nanosheet composites for high performance NO2 gas sensor at room temperature. Carbon 157:22–32. https://doi.org/10.1016/j.carbon.2019.10.011

    Article  CAS  Google Scholar 

  32. Yang Q, Guo EY, Liu H, Lu QF (2019) Engineering of Z-scheme 2D/3D architectures with Bi2MoO6 on TiO2 nanosphere for enhanced photocatalytic 4-nitrophenol degradation. J Taiwan Inst Chem E 105:65–74. https://doi.org/10.1016/j.jtice.2019.09.024

    Article  CAS  Google Scholar 

  33. Abdellatif HRS, Zhang G, Wang XT, Xie DT, Irvine JTS, Ni JP, Ni CS (2019) Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. Chem Eng J 370:875–884. https://doi.org/10.1016/j.cej.2019.03.266

    Article  CAS  Google Scholar 

  34. Qi KZ, Liu SY, Zada A (2020) Graphitic carbon nitride, a polymer photocatalyst. J Taiwan Inst Chem E 109:111–123. https://doi.org/10.1016/j.jtice.2020.02.012

    Article  CAS  Google Scholar 

  35. Tang YR, Su YY, Yang N, Zhang LC, Lv Y(2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water Anal Chem 86(9):4528–4535. https://doi.org/10.1021/ac5005162

    Article  CAS  Google Scholar 

  36. Sun TT, Yu XM, Zhong SW, Xu L, Zhao YH (2020) Late-model g-CNQDs/H3PW12O40/TiO2 heterojunction nanocatalyst with enhanced photocatalytic performance. J Mater Sci 55:15152–15166. https://doi.org/10.1007/s10853-020-05083-7

    Article  CAS  Google Scholar 

  37. Chan MH, Chen CW, Lee IJ, Chan YC, Tu DT, Hsiao M, Chen CH, Chen XY et al. (2016) Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots. Inorg Chem 55:10267–10277. https://doi.org/10.1021/acs.inorgchem.6b01522

    Article  CAS  Google Scholar 

  38. Li YH, Lv KL, Ho WK, Dong F, Wu XF, Xia Y (2017) Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl Catal B Environ 202:611–619. https://doi.org/10.1016/j.apcatb.2016.09.055

    Article  CAS  Google Scholar 

  39. Chen SB, Hao N, Jiang D, Zhang X, Zhou Z, Zhang Y, Wang K (2017) Graphitic carbon nitride quantum dots in situ coupling to Bi2MoO6 nanohybrids with enhanced charge transfer performance and photoelectrochemical detection of copper ion. J Electroanal Chem 787:66–71. https://doi.org/10.1016/j.jelechem.2017.01.042

    Article  CAS  Google Scholar 

  40. Collins G, Armstrong E, McNulty D, O’Hanlon S, Geaney H, O’Dwyer C (2016) 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion. Sci Technol Adv Mater 17:563–582. https://doi.org/10.1080/14686996.2016.1226121

    Article  CAS  Google Scholar 

  41. Deparis O, Mouchet SR, Su BL (2015) Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption. Phys Chem Chem Phys 17:30525–30532. https://doi.org/10.1039/c5cp04983k

    Article  CAS  Google Scholar 

  42. Wu M, Jin J, Liu J, Deng Z, Li Y, Deparis O, Su BL (2013) High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. J Mater Chem A 1:15491–15500. https://doi.org/10.1039/c3ta13574h

    Article  CAS  Google Scholar 

  43. Liu J, Jin J, Li Y, Huang HW, Wang C, Wu M, Chen LH, Su BL (2014) Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J Mater Chem A 2:5051–5059. https://doi.org/10.1039/c3ta15044e

    Article  CAS  Google Scholar 

  44. Wu XJ, Lan DP, Zhang RF, Pang F, Ge JP (2019) Fabrication of opaline ZnO photonic crystal film and its slow-photon effect on photoreduction of carbon dioxide. Langmuir 35:194–202. https://doi.org/10.1021/acs.langmuir.8b03327

    Article  CAS  Google Scholar 

  45. Rahul TK, Sandhyarani N (2015) Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis. Nanoscale 7:19743. https://doi.org/10.1039/c5nr04663g

    Article  CAS  Google Scholar 

  46. Pang F, Jiang YT, Zhang YQ, He MY, Ge JP (2015) Synergetic enhancement of photocatalytic activity with a photonic crystal film as a catalyst support. J Mater Chem A 3:21439–21443. https://doi.org/10.1039/c5ta05224f

    Article  CAS  Google Scholar 

  47. Li P, Wang Y, Wang AJ, Chen SL (2017) TiO2 activity enhancement through synergistic effect of photons localization of photonic crystals and the sensitization of CdS quantum dots. Photonics Nanostruct Fundam Appl 23:12–20. https://doi.org/10.1016/j.photonics.2016.11.006

    Article  Google Scholar 

  48. Li P, Wang Y, Chen SL, Wang AJ (2015) Enhancement of gas–solid photocatalytic activity of nanocrystalline TiO2 by SiO2 opal photonic crystal. J Mater Sci 51:2079–2089. https://doi.org/10.1007/s10853-015-9518-7

    Article  CAS  Google Scholar 

  49. Zhang RF, Zeng F, Pang F, Ge JP (2018) Substantial enhancement toward the photocatalytic activity of CdS quantum dots by photonic crystal-supporting films. ACS Appl Mater Interfaces 10:42241–42248. https://doi.org/10.1021/acsami.8b14437

    Article  CAS  Google Scholar 

  50. Zhou J, Yang Y, Zhang CY (2013) A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem Commun 49:8605–8607. https://doi.org/10.1039/c3cc42266f

    Article  CAS  Google Scholar 

  51. Zhang JA, Wang MZ, Ge XW, Wu MY, Wu QY, Yang JJ, Wang MY, Jin ZL et al. (2011) Facile fabrication of free-standing colloidal-crystal films by interfacial self-assembly. J Colloid Interface Sci 353:16–21. https://doi.org/10.1016/j.jcis.2010.09.007

    Article  CAS  Google Scholar 

  52. Lv JL, Dai K, Zhang JF, Geng L, Liang CH, Liu QC, Zhu GP, Chen C (2015) Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl Surf Sci 358:377–384. https://doi.org/10.1016/j.apsusc.2015.06.183

    Article  CAS  Google Scholar 

  53. Zheng JH, Zhang L (2018) Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl Catal B Environ 237:1–8. https://doi.org/10.1016/j.apcatb.2018.05.060

    Article  CAS  Google Scholar 

  54. Park M, Seo JH, Kim JH, Park G, Park JY, Seo WS, Song H, Nam KM (2018) Effective formation of WO3 nanoparticle/Bi2S3 nanowire composite for improved photoelectrochemical performance. J Phys Chem C 122:17676–17685. https://doi.org/10.1021/acs.jpcc.8b05555

    Article  CAS  Google Scholar 

  55. Yan T, Yan Q, Wang XD, Liu HY, Li MM, Lu SX, Xu WG, Sun M (2015) Facile fabrication of heterostructured g-C3N4/Bi2MoO6 microspheres with highly efficient activity under visible light irradiation. Dalton Trans 44:1601–1611. https://doi.org/10.1039/c4dt02127d

    Article  CAS  Google Scholar 

  56. Zhao RY, Sun XX, Jin YR, Han JS, Wang L, Liu FS (2019) Au/Pd/g-C3N4 nanocomposites for photocatalytic degradation of tetracycline hydrochloride. J Mater Sci 54:5445–5456. https://doi.org/10.1007/s10853-018-03278-7

    Article  CAS  Google Scholar 

  57. Rehman R, Lahiri SK, Islam A, Wei P, Xu Y (2021) Self-assembled hierarchical CuxO@C18H36O2 nanoflakes for superior fenton-like catalysis over a wide range of pH. ACS Omega 6:22188–22201. https://doi.org/10.1021/acsomega.1c02881

    Article  CAS  Google Scholar 

  58. Oyetade OA, Nyamori VO, Martincigh BS, Jonnalagadda SB (2015) Effectiveness of carbon nanotube–cobalt ferrite nanocomposites for the adsorption of rhodamine B from aqueous solutions. RSC Adv 5:22724–22739. https://doi.org/10.1039/c4ra15446k

    Article  CAS  Google Scholar 

  59. Zhang YF, Selvaraj R, Sillanpaa M, Kim Y, Tai CW (2014) The influence of operating parameters on heterogeneous photocatalytic mineralization of phenol over BiPO4. Chem Eng J 245:117–123. https://doi.org/10.1016/j.cej.2014.02.028

    Article  CAS  Google Scholar 

  60. Akhavan O, Abdolahad M, Esfandiar A, Mohatashamifar M (2010) Photodegradation of graphene oxide sheets by TiO2 nanoparticles after a photocatalytic. Reduct J Phys Chem C 114:12955–12959. https://doi.org/10.1021/jp103472c29

    Article  CAS  Google Scholar 

  61. Akhavan O (2010) Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4:4174–4180. https://doi.org/10.1021/nn10074

    Article  CAS  Google Scholar 

  62. Miao YC, Yin HB, Peng L, Huo YN, Li HX (2016) BiOBr/Bi2MoO6 composite in flower-like microspheres with enhanced photocatalytic activity under visible-light irradiation. RSC Adv 6:13498–13504. https://doi.org/10.1039/c5ra18987j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the National Natural Science Foundation of China (51502210), the Fund of Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science (CHCL21002), the Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education (LCX2021001), the Innovation Project of Hubei Three Gorges Laboratory (SC211003) and the 16th President’s Foundation of Wuhan Institute of Technology (XZJJ2021091), the 2021 Hubei College Students Innovation and Entrepreneurship Training Program (S202110490001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Li or Renliang Lyu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Wang, Q., Li, P. et al. Effect of photonic crystal film as support on enhancement of graphite-carbon nitride quantum dots sensitized Bi2MoO6 photocatalytic activity. J Sol-Gel Sci Technol 106, 455–470 (2023). https://doi.org/10.1007/s10971-022-05994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05994-8

Keywords

Navigation