Skip to main content
Log in

Layered Bi2MoO6/LDH hetero-structured composites with enhanced visible light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Series of Bi2MoO6/NiAl-LDH hetero-junction photocatalysts were synthesized by a two-step hydrothermal method with a self-assembled process. It indicated that the in-situ intercalated NiAl-LDH showed a tight contact with Bi2MoO6 layers and thus exhibited the rapid transfer of photogenerated electrons on the interface. The photocatalytic performance was evaluated by the degradation of rhodamine B (RhB) under visible light irradiation. The resulted Bi2MoO6/NiAl-LDH sample showed a higher visible-light photocatalytic activity for the degradation of RhB than any single component. The optimal LDH content in Bi2MoO6/NiAl-LDH is 15% with the degradation efficiency for more than 90% during 60 min. The excessive amount of NiAl-LDH in Bi2MoO6/NiAl-LDH could reduce the light absorption efficiency of Bi2MoO6 and thus affected the generation of photoinduced electron–hole pairs. The enhanced photocatalytic activity and stability of Bi2MoO6/NiAl-LDH was attributed to the synergistic effects of the introduction of narrow band-gap NiAl-LDH and the construction of layered hetero-junction. Our synthetic method of self-assembly sheets has certain guided significance for the synthesis and application of other photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. L.F. Liotta, M. Gruttadauria, G. Di Carlo, G. Perrini, V. Librando, Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J. Hazard. Mater. 162, 588–606 (2009)

    Article  Google Scholar 

  2. R. Michael, T. Scot, W.Y. Choi, W. Detlef, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  3. C. Liu, C. Zhang, J. Wang, Q. Xu, X. Chen, C. Wang et al., N-doped CsTi2NbO7 @g-C3N4 core-shell nanobelts with enhanced visible light photocatalytic activity. Mater. Lett. 217, 235–238 (2018)

    Article  Google Scholar 

  4. C. Liu, G. Xu, Y. Zhu, Q. Xu, G. Yu, H. Hou et al., In situ construction of layered K3Ti5NbO14/g-C3N4 composite for improving visible-light-driven photocatalytic performance. J. Mater. Sci.: Mater. Electron. 29, 15859–15868 (2018)

    Google Scholar 

  5. Y. Wang, S.K. Li, X.R. Xing, F.Z. Huang et al., Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. Chemistry 17, 4802–4808 (2011)

    Article  Google Scholar 

  6. S. Vadivel, V.P. Kamalakannan, N. Balasubramanian, d-Pencillamine assisted microwave synthesis of Bi2S3 microflowers/RGO composites for photocatalytic degradation—a facile green approach. Ceram. Int. 40, 14051–14060 (2014)

    Article  Google Scholar 

  7. F.J. Chen, Y. Cao, D.Z. Jia, Facile synthesis of Bi2S3 hierarchical nanostructure with enhanced photocatalytic activity. J. Colloid Interface Sci. 404, 110–116 (2013)

    Article  Google Scholar 

  8. X. Meng, L. Zhang, H.D. Dai, Z.X. Zhao, R.Z. Zhang, Y.X. Liu, Surfactant-assisted hydrothermal fabrication and visible-light-driven photocatalytic degradation of methylene blue over multiple morphological BiVO4 single-crystallites. Mater. Chem. Phys. 125, 59–65 (2011)

    Article  Google Scholar 

  9. W.Z. Yin, W.Z. Wang, L. Zhou, S.M. Sun, L. Zhang, CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater. 173, 194–199 (2010)

    Article  Google Scholar 

  10. J. Di, J.X. Xia, Y.P. Ge, H.P. Li et al., Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl. Catal. B 168–169, 51–61 (2015)

    Article  Google Scholar 

  11. Z. He, C. Sun, S.G. Yang, Y.C. Ding et al., Photocatalytic degradation of rhodamine B by Bi2WO6with electron accepting agent under microwave irradiation: mechanism and pathway. J. Hazard. Mater. 162, 1477–1486 (2009)

    Article  Google Scholar 

  12. Y.B. Liu, G.Q. Zhu, J.Z. Gao, M. Hojamberdiev et al., A novel CeO2/Bi4Ti3O12 composite heterojunction structure with an enhanced photocatalytic activity for bisphenol A. J. Alloys Compd. 688, 487–496 (2016)

    Article  Google Scholar 

  13. Z.W. Chen, H. Jiang, W.L. Jin, C.K. Shi, Enhanced photocatalytic performance over Bi 4Ti3O12 nanosheets with controllable size and exposed {0 0 1} facets for Rhodamine B degradation. Appl. Catal. B 180, 698–706 (2016)

    Article  Google Scholar 

  14. L.M. Reilly, G. Sankar, C.R.A. Catlow, Following the formation of γ-phase Bi2MoO6 catalyst by in situ XRD/XAS and thermogravimetric techniques. Solid State Chem. 148, 178–185 (1999)

    Article  Google Scholar 

  15. C. Pirovano, M. Saiful Islam, G. Nowogrocki, G. Mairesse, Modelling the crystal structures of Aurivillius phases. Solid State Ionics 140, 115–123 (2001)

    Article  Google Scholar 

  16. Y. Shimodaira, H. Kobayashi, A. Kudo, Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. J. Phys. Chem. 110, 17790–17797 (2006)

    Article  Google Scholar 

  17. W. Matthew, M. Patrivk, R. Seshadri, B. Bursten, Structure and bonding in SnWO4, PbWO4, and BiVO4: lone pairs vs inert pairs. Inorg. Chem. 46, 3839–3850 (2007)

    Article  Google Scholar 

  18. H.H. Li, C.Y. Liu, K.W. Li, H. Wang, Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts. J. Mater. Sci. 43, 7026–7034 (2008)

    Article  Google Scholar 

  19. Y. Ma, Y. Jia, Z.G. Jiao, M. Yang et al., Hierarchical Bi2MoO6 nanosheet-built frameworks with excellent photocatalytic properties. Chem. Commun. (Camb) 51, 6655–6658 (2015)

    Article  Google Scholar 

  20. C.S. Guo, J. Xu, S.F. Wang, L. Li, Y. Zhang, X.C. Li, Facile synthesis and photocatalytic application of hierarchical mesoporous Bi2MoO6 nanosheet-based microspheres. CrystEngComm 14, 3602–3608 (2012)

    Article  Google Scholar 

  21. Y. Zheng, F. Duan, J. Wu, M.Q. Liu, Chen, Y. Xie, Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation. Mol. Catal. A 303, 9–14 (2009)

    Article  Google Scholar 

  22. Z. Dai, F. Qin, H.P. Zhao, J. Ding, Y.L. Liu, R. Chen, Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis. ACS Catal. 6, 3180–3192 (2016)

    Article  Google Scholar 

  23. T.F. Zhou, J.C. Hu, J.L. Li, Er3+ doped bismuth molybdate nanosheets with exposed {010} facets and enhanced photocatalytic performance. Appl. Catal. B 110, 221–230 (2011)

    Article  Google Scholar 

  24. R. Adhikari, B. Joshi, R. Narro-García, E. De la Rosa, Microwave hydrothermal synthesis and infrared to visible upconversion luminescence of Er3+/Yb3+ co-doped bismuth molybdate nanopowder. J. Lumin. 145, 866–871 (2014)

    Article  Google Scholar 

  25. S.S. Jin, H.S. Hao, Y.J. Gan, W.H. Guo et al., Preparation and improved photocatalytic activities of Ho3+ /Yb3+ co-doped Bi2MoO6. Mater. Chem. Phys. 199, 107–112 (2017)

    Article  Google Scholar 

  26. T. Yan, H.G. Liu, T.T. Wu, X.J. Liu et al., Fabrication of hierarchical BiOI/Bi2MoO6 heterojunction for degradation of bisphenol A and dye under visible light irradiation. Alloys Compd. 634, 223–231 (2015)

    Article  Google Scholar 

  27. Y.S. Xu, Z.J. Zhang, W.D. Zhang, Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity. Mater. Res. Bull. 48, 1420–1427 (2013)

    Article  Google Scholar 

  28. Y.S. Xu, W.D. Zhang, Anion exchange strategy for construction of sesame-biscuit-like Bi2O2CO3/Bi2MoO6 nanocomposites with enhanced photocatalytic activity. Appl. Catal. B 140–141, 306–316 (2013)

    Article  Google Scholar 

  29. H.P. Li, J.Y. Liu, W.G. Hou, N. Du et al., Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity. Appl. Catal. B 160–161, 89–97 (2014)

    Article  Google Scholar 

  30. K.M. Parida, L. Mohapatra, Carbonate intercalated Zn/Fe layered double hydroxide: a novel photocatalyst for the enhanced photo degradation of azo dyes. Chem. Eng. J. 179, 131–139 (2012)

    Article  Google Scholar 

  31. L. Mohapatra, K.M. Parida, Zn–Cr layered double hydroxide: visible light responsive photocatalyst for photocatalytic degradation of organic pollutants. Sep. Purif. Technol. 91, 73–80 (2012)

    Article  Google Scholar 

  32. M. Dinari, M.M. Momeni, Y. Ghayeb, Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts. J. Mater. Sci.: Mater. Electron. 27, 9861–9869 (2016)

    Google Scholar 

  33. Y. Fu, F.Y. Ning, S.M. Xu, H.L. An, M.F. Shao, M. Wei, Terbium doped ZnCr-layered double hydroxides with largely enhanced visible light photocatalytic performance. J. Mater. Chem. A 4, 3907–3913 (2016)

    Article  Google Scholar 

  34. N. Gu, J.L. Gao, K.T. Wang, B. Li, W.C. Dong, Y.L. Ma, Microcystis aeruginosa inhibition by Zn–Fe–LDHs as photocatalyst under visible light. J. Taiwan Inst. Chem. Eng. 64, 189–195 (2016)

    Article  Google Scholar 

  35. M. Gong, Y.G. Li, H.L. Wang, Y.G. Liang, J.Z. Wu et al., An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013)

    Article  Google Scholar 

  36. J.F. Ma, J.F. Ding, L.M. Yu, L.Y. Li, Y. Kong, S. Komarneni, BiOCl dispersed on NiFe–LDH leads to enhanced photo-degradation of Rhodamine B dye. Appl. Clay Sci. 109–110, 76–82 (2015)

    Article  Google Scholar 

  37. S. Nayak, L. Mohapatra, K. Parida, Visible light-driven novel g-C3N4/NiFe-LDH composite photocatalyst with enhanced photocatalytic activity towards water oxidation and reduction reaction. J. Mater. Chem. A 3, 18622–18635 (2015)

    Article  Google Scholar 

  38. M. Mureseanu, T. Radu, R.D. Andrei, M. Darie, G. Carja, Green synthesis of g-C3N4 /CuONP/LDH composites and derived g-C3N4/MMO and their photocatalytic performance for phenol reduction from aqueous solutions. Appl. Clay Sci. 141, 1–12 (2017)

    Article  Google Scholar 

  39. X. Zhao, T.G. Xu, W.Q. Yao, Y.F. Zhu, Photodegradation of dye pollutants catalyzed by γ-Bi2MoO6 nanoplate under visible light irradiation. Appl. Surf Sci. 255, 8036–8040 (2009)

    Article  Google Scholar 

  40. F. Chen, C.G. Niu, Q. Yang, X.M. Li, G.G. Zeng, Facile synthesis of visible-light-active BiOI modified Bi2MoO6 photocatalysts with highly enhanced photocatalytic activity. Ceram. Int. 42, 2515–2525 (2016)

    Article  Google Scholar 

  41. N. Tian, H.W. Huang, Y.X. Guo, Y. He, Y.H. Zhang, Ag-C3N4/Bi2O2CO3 composite with high visible-light-driven photocatalytic activity for rhodamine B degradation. Appl. Surf. Sci. 322, 249–254 (2014)

    Article  Google Scholar 

  42. W.J. Wang, H.F. Cheng, B.B. Huang, X.J. Lin et al., Synthesis of Bi2O2CO3/Bi2S3 hierarchical microspheres with heterojunctions and their enhanced visible light-driven photocatalytic degradation of dye pollutants. J. Colloid Interface Sci. 402, 34–39 (2013)

    Article  Google Scholar 

  43. Y.P. Zhu, M.W. Laipan, R.L. Zhu, T.Y. Xu et al., Enhanced photocatalytic activity of Zn/Ti-LDH via hybridizing with C60. Mol. Catal. 427, 54–61 (2017)

    Article  Google Scholar 

  44. J.M. Ferna´ndez, C. Barriga, M.A. Ulibarri, F.M. Labajos, V. Rives, New hydrotalcite-like compounds containing yttrium. Chem. Mater. 9, 312–318 (1997)

    Article  Google Scholar 

  45. J. Li, F.P. Chen, G.P. Jin, X.S. Feng, X.X. Li, Removals of aqueous sulfur dioxide and hydrogen sulfide using CeO2-NiAl-LDHs coating activated carbon and its mix with carbon nano-tubes. Colloids Surf. A 476, 90–97 (2015)

    Article  Google Scholar 

  46. Y. Izum, T. Itoi, S. Peng, K. Oka, Y. Shibata, Site structure and photocatalytic role of sulfur or nitrogen-doped titanium oxide with uniform mesopores under visible light. J. Phys. Chem. 113, 6706–6718 (2009)

    Google Scholar 

  47. Q.M. Zhao, Q. Zhang, J.Q. Huang, F. Wei, Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides—properties, synthesis, and applications. Adv. Funct. Mater. 22, 675–694 (2012)

    Article  Google Scholar 

  48. X.T. Gao, E. Wachs Israel, Investigation of surface structures of supported vanadium oxide catalysts by UV-vis-NIR diffuse reflectance spectroscopy. J. Phys. Chem. 104, 1261–1268 (2000)

    Article  Google Scholar 

  49. G.K. Mikami, F. Grosu, S. Kawamura, Y. Yoshida, G. Carja, Y. Izumi, Harnessing self-supported Au nanoparticles on layered double hydroxides comprising Zn and Al for enhanced phenol decomposition under solar light. Appl. Catal. B 199, 260–271 (2016)

    Article  Google Scholar 

  50. M.Y. Zhang, C.L. Shao, P. Zhang, C.Y. Su, X. Zhang, Bi2MoO6 microtubes: controlled fabrication by using electrospun polyacrylonitrile microfibers as template and their enhanced visible light photocatalytic activity. J. Hazard. Mater. 225–226, 155–163 (2012)

    Article  Google Scholar 

  51. C.I. Ezeh, M.C. Tomatis, X.G. Yang, J. He, C.G. Sun, Ultrasonic and hydrothermal mediated synthesis routes for functionalized Mg-Al LDH: comparison study on surface morphology, basic site strength, cyclic sorption efficiency and effectiveness. Ultrason. Sonochem. 40, 341–352 (2018)

    Article  Google Scholar 

  52. A. Martínez-de la Cruz, S. Obregón Alfaro, Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: photoassisted degradation of organic dyes under vis-irradiation. J. Mol. Catal. A 320, 85–91 (2010)

    Article  Google Scholar 

  53. X.W. Lv, X. Xiao, M.L. Cao, Y. Bu, C. Wang et al., Efficient carbon dots/NiFe-layered double hydroxide/BiVO 4 photoanodes for photoelectrochemical water splitting. Appl. Surf. Sci. 439, 1065–1071 (2018)

    Article  Google Scholar 

  54. J.L. Lv, K. Dai, J.F. Zhang, L. Geng, C.H. Liang et al., Facile synthesis of Z-scheme graphitic-C3N4/Bi2MoO6 nanocomposite for enhanced visible photocatalytic properties. Appl. Surf. Sci. 358, 377–384 (2015)

    Article  Google Scholar 

  55. M.F. Shao, F.Y. Ning, J. Zhao, M. Wei, D.G. Evans, X. Duan, Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. J. Am. Chem. Soc. 134, 1071–1077 (2012)

    Article  Google Scholar 

  56. X.H. Huang, G.H. Li, B.Q. Cao, M. Wang, C.Y. Hao, Morphology evolution and CL property of Ni-doped zinc oxide nanostructures with room-temperature ferromagnetism. J. Phys. Chem. 113, 4381–4385 (2009)

    Article  Google Scholar 

  57. S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl. Mater. Interfaces 10, 2667–2678 (2018)

    Article  Google Scholar 

  58. X. Lu, J. Ma, H.X. Jiang, C. Liu, K.M. Lau, Low trap states in in situ SiNx/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition. Appl. Phys. Lett. 105, 102911–102915 (2014)

    Article  Google Scholar 

  59. J.H. Bi, L. Wu, J. Li, Z.H. Li, X.X. Wang, X.Z. Fu, Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Mater. 55, 4699–4705 (2007)

    Article  Google Scholar 

  60. X. Du, J. Wan, J. Jia, C. Pan, X.Y. Hu et al., Photocatalystic degradation of RhB over highly visible-light-active Ag3PO4-Bi2MoO6 heterojunction using H2O2 electron capturer. Mater. Design 119, 113–123 (2017)

    Article  Google Scholar 

  61. L. Zhang, D.R. Chen, X.L. Jiao, Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. 110, 2668–2673 (2006)

    Article  Google Scholar 

  62. C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)

    Article  Google Scholar 

  63. T. Yan, Q. Yan, X.D. Wang, H.Y. Liu, M.M. Li et al., Facile fabrication of heterostructured g-C3N4/Bi2MoO6 microspheres with highly efficient activity under visible light irradiation. Dalton Trans. 44, 1601–1611 (2015)

    Article  Google Scholar 

  64. C. Liu, H.J. Zhu, Y.S. Zhu, P.Y. Dong, H.J. Hou et al., Ordered layered N-doped KTiNbO5/g-C3 N4 heterojunction with enhanced visible light photocatalytic activity. Appl. Catal. B 228, 54–63 (2018)

    Article  Google Scholar 

  65. W. Wang, J.J. Fang, S.F. Shao, M. Lai, C.H. Lu, Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B 217, 57–64 (2017)

    Article  Google Scholar 

  66. C. Liu, Q.S. Wu, M.W. Ji, H.J. Zhu et al., Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity. J. Alloys Compd. 723, 1121–1131 (2017)

    Article  Google Scholar 

  67. Z. Lu, L. Zeng, W.L. Song, Z. Qin, D.W. Zeng, C.S. Xie, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B 202, 489–499 (2017)

    Article  Google Scholar 

  68. F. Dong, Y.H. Li, Z.Y. Wang, W.K. Ho, Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation. Appl. Surf. Sci. 358, 393–403 (2015)

    Article  Google Scholar 

  69. Y. Xu, A.A. Martin, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85, 543–556 (2000)

    Article  Google Scholar 

  70. C.N. Tang, E.Z. Liu, J. Wan, X.Y. Hu, J. Fan, Co3O4 nanoparticles decorated Ag3PO4 tetrapods as an efficient visible-light-driven heterojunction photocatalyst. Appl. Catal. B 181, 707–715 (2016)

    Article  Google Scholar 

  71. R.G. Pearson, Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 27, 734–740 (1988)

    Article  Google Scholar 

  72. D.C. Ghosh, T. Chakraborty, Gordy’s electrostatic scale of electronegativity revisited. J. Mol. Struct. Theochem 906, 87–93 (2009)

    Article  Google Scholar 

  73. D. Kandi, S. Martha, A. Thirumurugan, K.M. Parida, CdS QDs-decorated self-doped γ-Bi2MoO6: a sustainable and versatile photocatalyst toward photoreduction of Cr(VI) and degradation of phenol. ACS OMEGA 2, 9040–9056 (2017)

    Article  Google Scholar 

  74. C. Liu, R.R. Han, H.M. Ji, T. Sun, J. Zhao et al., S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Phys. Chem. Chem. Phys. 18, 801–810 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported the National Natural Science Foundation of China (NSFC) (Grants 21603182), University Science Research Project of Jiangsu Province (Grants 2016097), The natural science Foundation of the Jiangsu Higher Education Institutions of China (Grants 201703196).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Dai or Guiyun Yu.

Ethics declarations

Conflict of interest

All authors have declared that: (i) no support, financial or otherwise, has been received from any organization that may have an interest in the submitted work; and (ii) there are no other relationships or activities that could appear to have influenced the submitted work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 130 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, F., Cui, E., Liu, H. et al. Layered Bi2MoO6/LDH hetero-structured composites with enhanced visible light photocatalytic activity. J Mater Sci: Mater Electron 30, 2572–2584 (2019). https://doi.org/10.1007/s10854-018-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0532-9

Navigation