Skip to main content
Log in

Corrosion-resistant mulberry fruit (Morus nigra L.) extracts incorporated hybrid (GPTMS-TEOS) composite silanol coatings for low carbon steel protection

  • Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present work aimed at the evaluation of mulberry (Morus nigra L.) fruit extracts-doped hybrid sol–gel coatings’ corrosion resistance performance for low carbon steel in NaCl electrolyte. Alkoxysilane formulation was prepared to utilize 3-glycidoxypropyltrimethoxysilane and tetraethyl orthosilicate precursors. The corrosion inhibitive properties of extracts-doped composite coatings on low carbon steel surface in NaCl electrolyte were determined by exploiting electrochemical impedance spectroscopy, electrochemical noise measurement and potentiodynamic polarization. The corrosion inhibition efficiencies obtained were 85.57% and 81.37% for hybrid coatings doped with mulberry ethanol extract and water extract, respectively. It was noted that the hybrid silanol film applied low carbon steel which was doped with 750 ppm mulberry ethanol extract rendered higher corrosion resistance. Additionally, the Tafel slopes indicated that mulberry extracts function as “mixed type” corrosion inhibitors, particularly prevailing cathodic inhibition. Surface characteristics of coated low carbon steel plates were researched engaging scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and wettability measurement. Fourier transform infrared spectroscopy established Fe–O–Si bonding among mild steel substrate and composite coating. Scanning electron micrographs affirmed that the coating provided better corrosion mitigation due to the inhibitive efficacy of the doping. Wettability analysis revealed that low carbon steel treated with 750 ppm mulberry ethanol extract doped coating was highly hydrophobic.

Graphical abstract

Highlights

  • Developed films were coated on low carbon steel by self-assembled monolayer method.

  • icorr values of composite coatings were significantly lower than the uncoated substrate.

  • Mulberry extracts-doped-composite coatings revealed higher charge transfer resistance.

  • Mulberry extracts-doped composite coatings demonstrated improved hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Figueira RB, Silva CJR, Pereira EV (2015) Organic-inorganic hybrid sol-gel coatings for metal corrosion protection: a review of recent progress. J Coat Technol Res 12(1):1–35. https://doi.org/10.1007/s11998-014-9595-6

    Article  CAS  Google Scholar 

  2. Figueira RB, Fontinha IR, Silva CJR, Pereira EV (2016) Hybrid sol-gel coatings: Smart and green materials for corrosion mitigation. Coatings 6(1):12. https://doi.org/10.3390/coatings6010012

    Article  CAS  Google Scholar 

  3. Wang D, Bierwagen GP (2009) Sol-gel coatings on metals for corrosion protection. Prog Org Coat 64(4):327–338. https://doi.org/10.1016/j.porgcoat.2008.08.010

    Article  CAS  Google Scholar 

  4. Zheng S, Li J (2010) Inorganic-organic sol gel hybrid coatings for corrosion protection of metals. J Sol-Gel Sci Technol 54(2):174–187. https://doi.org/10.1007/s10971-010-2173-1

    Article  CAS  Google Scholar 

  5. Nazeer AA, Madkour M (2018) Potential use of smart coatings for corrosion protection of metals and alloys: A review. J Mol Liq 253:11–22. https://doi.org/10.1016/j.molliq.2018.01.027

    Article  CAS  Google Scholar 

  6. Santana I, Pepe A, Schreiner W, Pellice S, Ceré S (2016) Hybrid sol-gel coatings containing clay nanoparticles for corrosion protection of mild steel. Electrochimic Acta 203:396–403. https://doi.org/10.1016/j.electacta.2016.01.214

    Article  CAS  Google Scholar 

  7. Al-Otaibi MS, Al-Mayouf AM, Khan M, Mousa AA, Al-Mazroa SA, Alkhathlan HZ (2014) Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media. Arab J Chem 7(3):340–346. https://doi.org/10.1016/j.arabjc.2012.01.015

    Article  CAS  Google Scholar 

  8. El-Etre AY, El-Tantawy Z (2006) Inhibition of metallic corrosion using Ficus extract. Port Electrochimic Acta 24(3):347–356

    Article  CAS  Google Scholar 

  9. Oguzie EE, Onuchukwu AI, Okafor PC, Ebenso EE (2006) Corrosion inhibition and adsorption behaviour of extract on aluminium. Pigment Resin Technol 35(2):63–70. https://doi.org/10.1108/03699420610652340

    Article  CAS  Google Scholar 

  10. Oguzie EE, Ebenso EE (2006) Studies on the corrosion inhibiting effect of Congo red dye‐halide mixtures. Pigment Resin Technol 35(1):30–35. https://doi.org/10.1108/03699420610638021

    Article  CAS  Google Scholar 

  11. Ebenso EE, Eddy NO, Odiongenyi AO (2008) Corrosion inhibitive properties and adsorption behaviour of ethanol extract of Piper guinensis as a green corrosion inhibitor for mild steel in H2SO4. Afr J Pure Appl Chem 2(11):107–115

    Google Scholar 

  12. Oguzie EE, Enenebeaku CK, Akalezi CO, Okoro SC, Ayuk AA, Ejike EN (2010) Adsorption and corrosion-inhibiting effect of Dacryodis edulis extract on low-carbon- steel corrosion in acidic media. J Colloid Interface Sci 349(1):283–292. https://doi.org/10.1016/j.jcis.2010.05.027

    Article  CAS  Google Scholar 

  13. Umoru LE, Fawehinmi IA, Fasasi AY (2006) Investigation of the inhibitive influence of theobroma cacao and cola acuminata leaves extracts on the corrosion of a mild steel in sea water. J Appl Sci Res 2(4):200–204

    Google Scholar 

  14. Zakaria FA, Hamidon TS, Hussin MH (2022) Applicability of winged bean extracts as organic corrosion inhibitors for reinforced steel in 0.5 M HCl electrolyte. J Indian Chem Soc 99(2):100329. https://doi.org/10.1016/j.jics.2021.100329

    Article  CAS  Google Scholar 

  15. Saxena A, Prasad D, Haldhar R, Singh G, Kumar A (2018) Use of Sida cordifolia extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J Environ Chem Eng 6(1):694–700. https://doi.org/10.1016/j.jece.2017.12.064

    Article  CAS  Google Scholar 

  16. Pramana RI, Kusumastuti R, Soedarsono JW, Rustandi A (2013) Corrosioninhibition of low carbon steel by Pluchea Indica Less. in 3.5% NaCl solution. Adv Mat Res 785- 786:20–24

    Google Scholar 

  17. Pradityana A, Sulistijono, Shahab A, Chyntara S (2014) Eco-friendly green inhibitor of mild steel in 3,5% NaCl solution by Sarang Semut (Myrmecodia Pendans) extract. AIP Conf Proc 1617(1):161–164. https://doi.org/10.1063/1.4897128

    Article  Google Scholar 

  18. Edraki M, Mousazadeh Moghadam I, Banimahd Keivani M, Fekri MH (2019) Turmeric extract as a biocompatible inhibitor of mild steel corrosion in 3.5% NaCl solution. Iran. Chem Commun 7(2):228–241. https://doi.org/10.30473/icc.2018.42617.1486

    Article  CAS  Google Scholar 

  19. Devikala S, Kamaraj P, Arthanareeswari M, Pavithra S (2019) Green Corrosion inhibition of mild steel by Asafoetida extract extract in 3.5% NaCl. Mater Today Proc 14:590–601. https://doi.org/10.1016/j.matpr.2019.04.183

    Article  CAS  Google Scholar 

  20. Haddadi SA, Alibakhshi E, Bahlakeh G, Ramezanzadeh B, Mahdavian M (2019) A detailed atomic level computational and electrochemical exploration of the Juglans regia green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. J Mol Liq 284:682–699. https://doi.org/10.1016/j.molliq.2019.04.045

    Article  CAS  Google Scholar 

  21. Rozuli NA, Hamidon TS, Hussin MH (2019) Evaluation of Piper sarmentosum extract’s corrosion inhibitive effects and adsorption characteristics for the corrosion protection of mild steel in 0.5 M HCl. Mater Res Express 6(10):106524. https://doi.org/10.1088/2053-1591/ab3677

    Article  CAS  Google Scholar 

  22. Abdulmajid A, Hamidon TS, Abdul Rahim A, Hussin MH (2019) Physicochemical studies of tamarind shell tannins as a potential green rust converter. BioResources 14(3):6863–6882. https://doi.org/10.15376/biores.14.3.6863-6882

    Article  CAS  Google Scholar 

  23. Vorobyova V, Skiba M (2020) Apricot pomace extract as a natural corrosion inhibitor of mild steel corrosion in 0.5 M NaCl solution: a combined experimental and theoretical approach. J Chem Technol Met 55(1):210–222

    CAS  Google Scholar 

  24. Palaniappan N, Cole I, Caballero-Briones F, Manickam S, Thomas KRJ, Santos D (2020) Experimental and DFT studies on the ultrasonic energy-assisted extraction of the phytochemicals of Catharanthus roseus as green corrosion inhibitors for mild steel in NaCl medium. RSC Adv 10(9):5399–5411. https://doi.org/10.1039/C9RA08971C

    Article  CAS  Google Scholar 

  25. Afandi MA, Saud SN, Hamzah E (2020) Green-based corrosion protection for mild steel in 3.5% NaCl and distilled water medias: Jatropha curcas and Roselle extracts. J Met Mater. Miner 30(2):91–104. https://doi.org/10.14456/jmmm.2020.25

    Article  CAS  Google Scholar 

  26. Hamidon TS, Qiang TZ, Hussin MH (2019) Anticorrosive performance of AA6061 aluminium alloy treated with sol-gel coatings doped with mangrove bark tannins in 3.5 wt% NaCl. Mater Res Express 6(9):096417. https://doi.org/10.1088/2053-1591/ab2ef6

    Article  CAS  Google Scholar 

  27. Abdulmajid A, Hamidon TS, Hussin MH (2022) Characterization and corrosion inhibition studies of protective sol-gel films modified with tannin extracts on low carbon steel. J Sol-Gel Sci Technol 1–13. https://doi.org/10.1007/s10971-022-05941-7

  28. Abdulmajid A, Hamidon TS, Rahim AA, Hussin MH (2019) Tamarind shell tannin extracts as green corrosion inhibitors of mild steel in hydrochloric acid medium. Mater Res Express 6(10):106579. https://doi.org/10.1088/2053-1591/ab3b87

    Article  CAS  Google Scholar 

  29. Odewunmi NA, Umoren SA, Gasem ZM (2015) Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J Environ Chem Eng 3(1):286–296. https://doi.org/10.1016/j.jece.2014.10.014

    Article  CAS  Google Scholar 

  30. Ayoola AA, Babalola R, Durodola BM, Alagbe EE, Agboola O, Adegbile EO (2022) Corrosion inhibition of A36 mild steel in 0.5 M acid medium using waste citrus limonum peels. Results Eng 15:100490. https://doi.org/10.1016/j.rineng.2022.100490

    Article  CAS  Google Scholar 

  31. Fadhil AA, Khadom AA, Ahmed SK, Liu H, Fu C, Mahood HB (2020) Portulaca grandiflora as new green corrosion inhibitor for mild steel protection in hydrochloric acid: quantitative, electrochemical, surface and spectroscopic investigations. Surf Interfaces 20:100595. https://doi.org/10.1016/j.surfin.2020.100595

    Article  CAS  Google Scholar 

  32. Saxena A, Prasad D, Haldhar R, Singh G, Kumar A (2018) Use of Saraca ashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J Mol Liq 258:89–97. https://doi.org/10.1016/j.molliq.2018.02.104

    Article  CAS  Google Scholar 

  33. Daoudi W, El Aatiaoui A, Falil N, Azzouzi M, Berisha A, Olasunkanmi LO, Dagdag O, Ebenso EE, Koudad M, Aouinti A, Loutou M, Oussaid A (2022) Essential oil of Dysphania ambrosioides as a green corrosion inhibitor for mild steel in HCl solution. J Mol Liq 363:119839. https://doi.org/10.1016/j.molliq.2022.119839

    Article  CAS  Google Scholar 

  34. Shaikhah D, Ritacca AG, Ritacco I, Matamorose-Veloza A, Taleb W, Mohamed-Said M, Cowe B, Neville A, Camellone MF, Barker R (2022) Engineering of corrosion product-polymer hybrid layers for enhanced CO2 corrosion protection of carbon steel part two: Computational investigation and surface characterisation. Polymer 250:124776. https://doi.org/10.1016/j.polymer.2022.124776

    Article  CAS  Google Scholar 

  35. Vorobyova V, Skiba M, Andrey K (2022) Tomato pomace extract as a novel corrosion inhibitor for the steel in industrial media: The role of chemical transformation of the extract and proinhibition effect. J Mol Struct 1264:133155. https://doi.org/10.1016/j.molstruc.2022.133155

    Article  CAS  Google Scholar 

  36. Chigondo M, Chigondo F (2016) Recent natural corrosion inhibitors for mild steel: an overview. J Chem 2016:6208937. https://doi.org/10.1155/2016/6208937

    Article  CAS  Google Scholar 

  37. Ercisli S, Orhan E (2007) Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food chem 103(4):1380–1384. https://doi.org/10.1016/j.foodchem.2006.10.054

    Article  CAS  Google Scholar 

  38. Özgen M, Serçe S, Kaya C (2009) Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci Hortic 119(3):275–279. https://doi.org/10.1016/j.scienta.2008.08.007

    Article  CAS  Google Scholar 

  39. Wang R-S, Dong P-H, Shuai X-X, Chen M-S (2022) Evaluation of different black mulberry fruits (Morus nigra L.) based on phenolic compounds and antioxidant activity. Foods 11(9):1252. https://doi.org/10.3390/foods11091252

    Article  CAS  Google Scholar 

  40. de Freitas MM, Fontes PR, Souza PM, William Fagg C, Neves Silva Guerra E, de Medeiros Nóbrega YK, Silveira D, Fonseca-Bazzo Y, Simeoni LA, Homem-de-Mello M, Oliveira Magalhães P (2016) Extracts of Morus nigra L. leaves standardized in chlorogenic acid, rutin and isoquercitrin: tyrosinase inhibition and cytotoxicity. PloS ONE 11(9):e0163130. https://doi.org/10.1371/journal.pone.0163130

    Article  CAS  Google Scholar 

  41. Wu Y, Du Z, Wang H, Cheng X (2017) Synthesis of aqueous highly branched silica sol as underlying crosslinker for corrosion protection. Prog Org Coat 111:381–388. https://doi.org/10.1016/j.porgcoat.2017.06.023

    Article  CAS  Google Scholar 

  42. Sasikumar Y, Adekunle AS, Olasunkanmi LO, Bahadur I, Baskar R, Kabanda MM, Obot IB, Ebenso EE (2015) Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J Mol Liq 211:105–118. https://doi.org/10.1016/j.molliq.2015.06.052

    Article  CAS  Google Scholar 

  43. Lebrini M, Robert F, Roos C (2011) Alkaloids extract from Palicourea guianensis plant as corrosion inhibitor for C38 steel in 1 M hydrochloric acid medium. Int J Electrochem Sci 6(3):847–859

    CAS  Google Scholar 

  44. Ramezanzadeh B, Arman SY, Mehdipour M, Markhali BP (2014) Analysis of electrochemical noise (ECN) data in time and frequency domain for comparison corrosion inhibition of some azole compounds on Cu in 1.0 M H2SO4 solution. Appl Surf Sci 289:129–140. https://doi.org/10.1016/j.apsusc.2013.10.119

    Article  CAS  Google Scholar 

  45. Zehra S, Aslam R, Mobin M (2022) Electrochemical Impedance Spectroscopy: A Useful Tool for monitoring the Performance of Corrosion Inhibitors. In: Toor Iu (ed) Recent Developments in Analytical Techniques for Corrosion Research. Springer International Publishing, Cham, pp 91–117. https://doi.org/10.1007/978-3-030-89101-5_5

  46. Hamidon TS, Yun TP, Zakaria FA, Hussin MH (2021) Potential of zinc based-graphene oxide composite coatings on mild steel in acidic solution. J Ind Chem Soc 98(12):100243. https://doi.org/10.1016/j.jics.2021.100243

    Article  CAS  Google Scholar 

  47. Ghuzali NAM, Noor MAACM, Zakaria FA, Hamidon TS, Husin MH (2021) Study on Clitoria ternatea extracts doped sol-gel coatings for the corrosion mitigation of mild steel. Appl Surf Sci Adv 6:100177. https://doi.org/10.1016/j.apsadv.2021.100177

    Article  Google Scholar 

  48. Kadhim A, Betti N, Al-Bahrani HA, Al-Ghezi MKS, Gaaz T, Kadhum AH, Alamiery A (2021) A mini review on corrosion, inhibitors and mechanism types of mild steel inhibition in an acidic environment. Int J Corros Scale Inhib 10(3):861–884. https://doi.org/10.17675/2305-6894-2021-10-3-2

    Article  CAS  Google Scholar 

  49. Babić-Samardžija K, Lupu C, Hackerman N, Barron AR, Luttge A (2005) Inhibitive properties and surface morphology of a group of heterocyclic diazoles as inhibitors for acidic iron corrosion. Langmuir 21(26):12187–12196. https://doi.org/10.1021/la051766l

    Article  CAS  Google Scholar 

  50. Ferreira ES, Giacomelli C, Giacomelli FC, Spinelli A (2004) Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Mater Chem Phys 83(1):129–134. https://doi.org/10.1016/j.matchemphys.2003.09.020

    Article  CAS  Google Scholar 

  51. Asadi N, Naderi R, Saremi M, Arman SY, Fedel M, Deflorian F (2014) Study of corrosion protection of mild steel by eco-friendly silane sol-gel coating. J Sol-Gel Sci Technol 70(3):329–338. https://doi.org/10.1007/s10971-014-3286-8

    Article  CAS  Google Scholar 

  52. Yang G, Wang H, Wang N, Sun R, Wong C-P (2019) Integrated electrochemical analysis of polyvinyl pyrrolidone (PVP) as the inhibitor for copper chemical mechanical planarization (Cu-CMP. J Alloys Compd 770:175–182. https://doi.org/10.1016/j.jallcom.2018.08.101

  53. Suresh G, Kamachi Mudali U, Raj B (2019) Electrochemical Noise as Nondestructive Evaluation Technique for Understanding and Monitoring Corrosion. In: R Singh, B Raj, Mudali UK, Singh P (eds) Non‐Destructive Evaluation of Corrosion and Corrosion‐ assisted Cracking. Wiley, pp 198-244. https://doi.org/10.1002/9781118987735.ch7

  54. Hang TTX, Truc TA, Duong NT, Pébère N, Olivier M-G (2012) Layered double hydroxides as containers of inhibitors in organic coatings for corrosion protection of carbon steel. Prog Org Coat 74(2):343–348. https://doi.org/10.1016/j.porgcoat.2011.10.020

    Article  CAS  Google Scholar 

  55. Zhang S, Dong D, Sui Y, Liu Z, Wang H, Qian Z, Su W (2006) Preparation of core shell particles consisting of cobalt ferrite and silica by sol-gel process. J Alloy Compd 415(1-2):257–260. https://doi.org/10.1016/j.jallcom.2005.07.048

    Article  CAS  Google Scholar 

  56. Hamidon TS, Ishak NA, Hussin MH (2021) Enhanced corrosion inhibition of low carbon steel in aqueous sodium chloride employing sol-gel-based hybrid silanol coatings. J Sol-Gel Sci Technol 97(3):556–571. https://doi.org/10.1007/s10971-021-05474-5

    Article  CAS  Google Scholar 

  57. Izadi M, Shahrabi T, Ramezanzadeh B (2017) Electrochemical investigations of the corrosion resistance of a hybrid sol-gel film containing green corrosion inhibitor- encapsulated nanocontainers. J Taiwan Inst Chem Eng 81:356–372. https://doi.org/10.1016/j.jtice.2017.10.039

    Article  CAS  Google Scholar 

  58. Yazdani S, Javadpour S, Javidi M (2016) Corrosion resistant sol-gel coating on 2024-T3 aluminum. Iran J Mater Sci Eng 13(2):44–49. https://doi.org/10.22068/ijmse.13.2.44

    Article  Google Scholar 

  59. Law K-Y (2014) Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: getting the basics right. J Phys Chem Lett 5(4):686–688. https://doi.org/10.1021/jz402762h

    Article  CAS  Google Scholar 

  60. Palomino LM, Suegama PH, Aoki IV, Montemor MF, De Melo HG (2008) Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3. Corros Sci 50(5):1258–1266. https://doi.org/10.1016/j.corsci.2008.01.018

    Article  CAS  Google Scholar 

  61. Ishak NA, Hamidon TS, Zi-Hui T, Hussin MH (2020) Extracts of curcumin-incorporated hybrid sol-gel coatings for the corrosion mitigation of mild steel in 0.5 M HCl. J Coat Technol Res 17(6):1515–1535. https://doi.org/10.1007/s11998-020-00364-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding for the present study was offered by Universiti Sains Malaysia through USM External Grant-304/PKIMIA/6501087/U162.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hazwan Hussin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad Azran, N.A.A., Hamidon, T.S., Azahar, S.S. et al. Corrosion-resistant mulberry fruit (Morus nigra L.) extracts incorporated hybrid (GPTMS-TEOS) composite silanol coatings for low carbon steel protection. J Sol-Gel Sci Technol 105, 734–747 (2023). https://doi.org/10.1007/s10971-022-05993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05993-9

Keywords

Navigation