Skip to main content
Log in

Ordered arrays of electrostatically assembled SiO2–SiO2 composite particles by electrophoresis-induced stimulation

  • Invited Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Monodispersed silica (SiO2) nano- and microparticles can be fabricated by the sol-gel process. For device fabrication, precise formation of composite particles with a homogeneous and facile arrangement that form well-ordered, close-packed arrays is important. In this study, formation of electrostatically assembled SiO2–SiO2 composite particles with excellent homogeneity in arrangement was first demonstrated using sol-gel-derived monodispersed SiO2 particles with average particles sizes of 200 nm and 16 µm. Formation of two- and three-dimensionally, close-packed arrays by electrophoresis-induced stimulation with direct-current and alternating-current electric fields was achieved for the first time using these electrostatically assembled SiO2–SiO2 composite particles. Detailed morphological observation by scanning electron microscopy revealed that the structure of the SiO2–SiO2 composite particles remained intact even after electrophoretic stimulation. The feasibility of obtaining well-ordered arrays of electrostatically assembled sol–gel-derived SiO2–SiO2 composite particles is important for further development of sol-gel-related technology in various applications, such as advanced composites and optical devices.

Two- and three-dimensional ordering of electrostatically assembled SiO2-SiO2 composite particles using electrophoresis-induced stimulation

Highlights

  • Electrostatically assembled SiO2–SiO2 composite particles were prepared using monodispersed sol–gel-derived SiO2 particles with two sizes.

  • Ordered two- and three-dimensional SiO2–SiO2 composite-particle arrangements were obtained.

  • Superimposition of AC and DC electric fields through electrophoresis-induced stimulation generated a two-dimensional close-packed structure.

  • Simultaneous gravitational sedimentation and AC field application led to formation of three-dimensionally ordered arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tan WK, Muto H, Kawamura G, Lockman Z, Matsuda A (2021) Nanomaterial fabrication through the modification of Sol-Gel derived coatings. Nanomaterials 11(1):181

    Article  CAS  Google Scholar 

  2. Matsuda A (2022) Functionalities and modification of sol-gel derived SiO2–TiO2 systems for advanced coatings and powders. J Ceram Soc Jpn 130(1):143–162

    Article  CAS  Google Scholar 

  3. Okuyama K, Abdullah M, Wuled Lenggoro I, Iskandar F (2006) Preparation of functional nanostructured particles by spray drying. Adv Powder Technol 17(6):587–611

    Article  CAS  Google Scholar 

  4. Yanagishita T, Tomabechi Y, Nishio K, Masuda H (2004) Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina. Langmuir 20(3):554–555

    Article  CAS  Google Scholar 

  5. Hasegawa K, Kunugi S, Tatsumisago M, Minami T (1999) Preparation of thick films by electrophoretic deposition using surface modified silica particles derived from sol-gel method. J Sol-Gel Sci Technol 15(3):243–249

    Article  CAS  Google Scholar 

  6. Nishimori H, Hasegawa K, Tatsumisago M, Minami T (1996) Preparation of thick silica films in the presence of poly(acrylic acid) by using electrophoretic sol-gel deposition. J Sol-Gel Sci Technol 7(3):211–216

    Article  CAS  Google Scholar 

  7. Topçu G, Güner T, Demir MM (2018) Non-iridescent structural colors from uniform-sized SiO2 colloids. Photonics Nanostruct - Fundamentals Appl 29:22–29

    Article  Google Scholar 

  8. Ballato J, James A (1999) A ceramic photonic crystal temperature sensor. J Am Ceram Soc 82(8):2273–2275

    Article  CAS  Google Scholar 

  9. Fudouzi H, Kobayashi M, Shinya N (2001) Assembling 100 nm scale particles by an electrostatic potential field. J Nanopart Res 3(2):193–200

    Article  CAS  Google Scholar 

  10. Hu B, Zeng Z, Hong X (2016) Pore size controlled synthesis of SiO2 colloidal crystal. J Porous Mater 23(3):845–850

    Article  CAS  Google Scholar 

  11. Muto H, Kimata K, Murata K, Daiko Y, Matsuda A, Sakai M (2009) Fabrication of three-dimensionally close-packed aggregate of particles under mechanical vibration. Mater Sci Eng: B 161(1-3):193–197

    Article  CAS  Google Scholar 

  12. Muto H, Kimata K, Matsuda A, Sakai M (2008) Experimental study and simulation on the formation of two-dimensional particle arrangements. Mater Sci Eng: B 148(1-3):199–202

    Article  CAS  Google Scholar 

  13. Muramatsu K, Takahashi M, Tajima K, Kobayashi K (2001) Two-dimensional assemblies of colloidal SiO2 and TiO2 particles prepared by the Langmuir–Blodgett Technique. J Colloid Interface Sci 242(1):127–132

    Article  CAS  Google Scholar 

  14. Mihi A, Ocaña M, Míguez H (2006) Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media. Adv Mater 18(17):2244–2249

    Article  CAS  Google Scholar 

  15. Ballato J, Dimaio J, James A, Gulliver E (1999) Photonic band engineering through tailored microstructural order. Appl Phys Lett 75(11):1497–1499

    Article  CAS  Google Scholar 

  16. Sinitskii AS, Knotko AV, Tret’yakov YD (2005) Synthesis of SiO2 photonic crystals via self-organization of colloidal particles. Inorg Mater 41(11):1178–1184

    Article  CAS  Google Scholar 

  17. Katagiri K, Uemura K, Uesugi R, Inumaru K, Seki T, Takeoka Y (2018) Structurally colored coating films with tunable iridescence fabricated via cathodic electrophoretic deposition of silica particles. RSC Adv 8(20):10776–10784

    Article  CAS  Google Scholar 

  18. Masuda Y, Itoh T, Koumoto K (2005) Self-assembly patterning of silica colloidal crystals. Langmuir 21(10):4478–4481

    Article  CAS  Google Scholar 

  19. Xie J, Zhang L, Xing H, Bai P, Liu B, Wang C, Lei K, Wang H, Peng S, Yang S (2020) Gas sensing of ordered and disordered structure SiO2 and their adsorption behavior based on Quartz Crystal Microbalance. Sens Actuators B: Chem 305. pp. 127479

  20. Masuda Y, Itoh T, Koumoto K (2005) Self-assembly and micropatterning of spherical-particle assemblies. Adv Mater 17(7):841–845

    Article  CAS  Google Scholar 

  21. Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11(2):95–104

    Article  CAS  Google Scholar 

  22. de Castro, Larocca NM, Pessan LA (2018) Towards the development of superhydrophilic SiO2-based nanoporous coatings: concentration and particle size effect. Thin Solid Films 651:138–144

    Article  Google Scholar 

  23. Li H, Su XJ, Hou GL, Bi S, Liu CH, Lin YY, Li PH (2018) Fabrication of superhydrophobic surface with different particle size SiO2 by layer-by-layer assembly method. IOP Conference Series: Earth and Environmental Science 186.

  24. Li W, Guo T, Meng T, Huang Y, Li X, Yan W, Wang S, Li X (2013) Enhanced reversible wettability conversion of micro-nano hierarchical TiO2/SiO2 composite films under UV irradiation. Appl Surf Sci 283:12–18

    Article  CAS  Google Scholar 

  25. Gu Z-Z, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14(2):760–765

    Article  CAS  Google Scholar 

  26. Liu P, Chen J, Zhang Z, Xie Z, Du X, Gu Z (2018) Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale 10(8):3673–3679

    Article  CAS  Google Scholar 

  27. Shibata H, Sato M, Watanabe S, Matsumoto M (2009) Self-assembled arrays of silica particles on the patterns reflecting the phase-separated structures of mixed Langmuir–Blodgett films. Colloids Surf A: Physicochem Eng Asp 346(1-3):58–60

    Article  CAS  Google Scholar 

  28. Liau LC-K, Chen Y-P (2013) Effects of voltage operating strategy on electrophoretic self-assembly deposition of spherical SiO2 particles in water. Colloids Surf A: Physicochem Eng Asp 429:121–128

    Article  CAS  Google Scholar 

  29. Bogomolov VN, Gaponenko SV, Kapitonov AM, Prokofiev AV, Ponyavina AN, Silvanovich NI, Samoilovich SM (1996) Photonic band gap in the visible range in a three-dimensional solid state lattice. Appl Phys A 63(6):613–616

    Article  CAS  Google Scholar 

  30. Li J-F, Chen C-S, Yu B-Y, Wei W-CJ (2006) Simulation of colloidal particle packing for photonic bandgap crystals. J Am Ceram Soc 89(4):1257–1265

    Article  CAS  Google Scholar 

  31. Shirai H, Kinoshita T, Adachi M (2009) Patterning and Formation of SiO2 Nanoparticles on a substrate by electrically attracting of cluster ions. Jpn J Appl Phys 48:070216

    Article  Google Scholar 

  32. Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J (2002) Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett 80(4):661–663

    Article  CAS  Google Scholar 

  33. Teshima M, Seki T, Kawano R, Takeuchi S, Yoshioka S, Takeoka Y (2015) Preparation of structurally colored, monodisperse spherical assemblies composed of black and white colloidal particles using a micro-flow-focusing device. J Mater Chem C 3(4):769–777

    Article  CAS  Google Scholar 

  34. Takeoka Y (2012) Angle-independent structural coloured amorphous arrays. J Mater Chem 22(44):23299–23309

    Article  CAS  Google Scholar 

  35. Bretler S, Kanovsky N, Iline-Vul T, Cohen S, Margel S (2020) In-situ thin coating of silica micro/nano-particles on polymeric films and their anti-fogging application. Colloids Surf A: Physicochem Eng Aspects 607:125444

    Article  CAS  Google Scholar 

  36. Tan WK, Araki Y, Yokoi A, Kawamura G, Matsuda A, Muto H (2019) Micro- and nano-assembly of composite particles by electrostatic adsorption. Nanoscale Res Lett 14(1):297

    Article  Google Scholar 

  37. Krzywiecki M, Grządziel L, Peisert H, Biswas I, Chassé T, Szuber J (2010) X-ray Photoelectron Spectroscopy characterization of native and RCA-treated Si (111) substrates and their influence on surface chemistry of copper phthalocyanine thin films. Thin Solid Films 518(10):2688–2694

    Article  CAS  Google Scholar 

  38. Muto H, Yokoi A, Tan WK (2020) Electrostatic assembly technique for novel composites fabrication. J Compos Sci 4(4):155

    Article  CAS  Google Scholar 

  39. Caruso F, Lichtenfeld H, Giersig M, Möhwald H (1998) Electrostatic self-assembly of silica nanoparticle−polyelectrolyte multilayers on polystyrene latex particles. J Am Chem Soc 120(33):8523–8524

    Article  CAS  Google Scholar 

  40. Guzman E, Rubio RG, Ortega F (2020) A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 282:102197

    Article  CAS  Google Scholar 

  41. Akatsu T, Umehara Y, Shinoda Y, Wakai F, Muto H (2021) Mechanical properties of alumina matrix composite reinforced with carbon nanofibers affected by small interfacial sliding shear stress. Ceramics International.

  42. Guzmán E, Ritacco HA, Ortega F, Rubio RG (2012) Growth of Polyelectrolyte layers formed by Poly(4-styrenesulfonate sodium salt) and two different polycations: new insights from study of adsorption kinetics. The. J Phys Chem C 116(29):15474–15483

    Article  Google Scholar 

  43. Muto H, Sakai M (2000) The large-scale deformation of polycrystalline aggregates: cooperative grain-boundary sliding. Acta Materialia 48(16):4161–4167

    Article  CAS  Google Scholar 

  44. Muto H, Matsuda A, Sakai M (2006) Superplastic joining of 3Y-TZP. J Eur Ceram Soc 26(4-5):379–384

    Article  CAS  Google Scholar 

  45. Chávez-Valdez A, Boccaccini AR (2012) Innovations in electrophoretic deposition: Alternating current and pulsed direct current methods. Electrochim Acta 65:70–89

    Article  Google Scholar 

  46. Ammam M (2012) Electrophoretic deposition under modulated electric fields: a review. RSC Adv 2:7633–7646

    Article  CAS  Google Scholar 

  47. Hirata Y, Nishimoto A, Ishihara Y (1991) Forming of alumina powder by electrophoretic deposition. J Ceram Soc Jpn 99(1146):108–113

    Article  CAS  Google Scholar 

  48. Neirinck B, Fransaer J, Biest OVD, Vleugels J (2009) Aqueous electrophoretic deposition in asymmetric AC electric fields (AC–EPD). Electrochem Commun 11(1):57–60

    Article  CAS  Google Scholar 

  49. Tan WK, Matsuzaki T, Yokoi A, Kawamura G, Matsuda A, Muto H (2020) Improved green body strength using PMMA-Al2O3 composite particles fabricated via electrostatic assembly. Nano Express 1(3):030001

    Article  Google Scholar 

  50. Tan WK, Tsuzuki K, Yokoi A, Kawamura G, Matsuda A, Muto H (2020) Formation of porous Al2O3–SiO2 composite ceramics by electrostatic assembly. J Ceram Soc Jpn 128(9):605–610. https://doi.org/10.2109/jcersj2.20064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Edanz (https://www.edanz.com/ac) for editing a draft of this manuscript.

Author contributions

Credit Author Statement Investigation: TA; Methodology, Validation, and Writing - First draft: WKT; Investigation and Validation: AY; Validation: GK; Validation: Atsunori Matsuda; Supervision, Conceptualization, Writing - Review & Editing, Project Administration and Funding acquisition: HM.

Funding

This work was supported by the Cross Ministerial Strategic Innovation Promotion Program (SIP), Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research 22H01790, 22K04737, and Science of New-Class of Materials Based on Elemental Multiplicity and Heterogeneity (Grant No. 18H05452) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT, Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroyuki Muto or Wai Kian Tan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muto, H., Amano, T., Tan, W.K. et al. Ordered arrays of electrostatically assembled SiO2–SiO2 composite particles by electrophoresis-induced stimulation. J Sol-Gel Sci Technol 104, 548–557 (2022). https://doi.org/10.1007/s10971-022-05854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05854-5

Keywords

Navigation