Skip to main content

Advertisement

Log in

Analysis of the photocatalytic efficiency of ZnO–ZnO nanorods films deposited by two-step chemical methods in hydrogen generation

  • Original Paper: Sol–gel and hybrid materials for energy, environment and building applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Thin films of ZnO nanorods were grown by chemical bath deposition over a ZnO seed layer deposited by the sol–gel method. ZnO seed layer films showed a preferred crystal orientation in the (100) plane, so nanorods also grew in this plane. In photocatalytic hydrogen reaction tests of the thin films, ZnO nanorod films yielded 3.5 times as much hydrogen (0.14 µmol µm−2) as ZnO seed layer films (0.04 µmol µm−2). The hydrogen production of each film was related to its surface roughness and specific surface area, with larger specific surface areas improving photocatalytic activity by providing more adsorption sites for redox reactions. Atomic force microscopy showed that the roughnesses of ZnO seed layer films and ZnO nanorod films were 42 and 109 nm, respectively, and that their specific surface areas were 260 and 507 µm2, respectively. Moreover, the higher ratio of surface area to volume in ZnO nanorod films improved their response to light radiation relative to ZnO seed layer films by reducing the charge transfer resistance. The current density was much higher in the photoresponse of ZnO nanorod films (~0.02 mA cm−2) than in that of ZnO seed layer films (~0.01 mA cm−2).

Graphical abstract

Highlights

  • ZnO NRD yielded 3.5 times (0.14 μmol μm−2) H2 as ZnO (0.04 μmol μm−2) film.

  • The H2 production was related to its surface roughness and specific surface area.

  • Larger specific surface areas providing more adsorption sites for redox reactions.

  • Higher ratio of surface area to volume in ZnO NRD improved their response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agnihotri S, Bajaj G, Mukherji S, Mukherji S (2015) Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Nanoscale 7:7415–7429

    Article  CAS  Google Scholar 

  2. Silva JPB, Vieira EMF, Gwozdz K, Kaim A, Goncalves LM, MacManus-Driscoll JL, Hoye RLZ, Pereira M (2021) High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions. Nano Energy 89:106347

    Article  CAS  Google Scholar 

  3. Ma J, An W, Xu Q, Fan Q, Wang Y (2019) Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route. Prog Org Coat 134:40–47

    Article  CAS  Google Scholar 

  4. Koohgard M, Sarvestani AM, Hosseini-Sarvari M (2020) Photocatalytic synthesis of unsymmetrical thiourea derivatives via visible-light irradiation using nitrogen-doped ZnO nanorods. N. J Chem 44:4505–14512

    Article  Google Scholar 

  5. Siva Jyothi N, Ravichandran K (2020) Optimum pH for effective dye degradation: Mo, Mn, Co and Cu doped ZnO photocatalysts in thin film form. Ceram Int 46:23289–23292

    Article  CAS  Google Scholar 

  6. Wolcott A, Smith WA, Kuykendall TR, Zhao Y, Zhang JZ (2009) Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Adv Funct Mater 19:1849–1856

    Article  CAS  Google Scholar 

  7. Kant R, Dwivedi C, Pathak S, Dutta V (2018) Fabrication of ZnO nanostructures using Al doped ZnO (AZO) templates for application in photoelectrochemical water splitting. Appl Surf Sci 447:200–212

    Article  CAS  Google Scholar 

  8. Luo W, Zhang Q, Zhang J, Moioli E, Zhao K, Züttel A (2020) Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl Catal B Environ 273:119060

    Article  CAS  Google Scholar 

  9. Zhang J, Shao S, Zhou D, Xu Q, Wang T (2021) ZnO nanowire arrays decorated 3D N-doped reduced graphene oxide nanotube framework for enhanced photocatalytic CO2 reduction performance. J CO2 Util 50:101584

    Article  CAS  Google Scholar 

  10. Zhao Y, Liu N, Zhou S, Zhao J (2019) Two-dimensional ZnO for the selective photoreduction of CO2. J Mater Chem A 7:16294–16303

    Article  CAS  Google Scholar 

  11. Xu L, Xian F, Pei S, Zhua Y (2020) Photocatalytic degradation of organic dyes using ZnO nanorods supported by stainless steel wire mesh deposited by one-step method. Optik 203:164036

    Article  CAS  Google Scholar 

  12. Heng CL, Zhao CN, Zhang L, Xiang W, Su WY, Yin HX, Gao YK, Yin PG, Finstad TG (2020) Effects of Yb doping on the structure and near band-edge emission of ZnO thin films on Si after high temperature annealing. J Lumin 222:117153

    Article  CAS  Google Scholar 

  13. Danwittayakul S, Jaisai M, Koottatep T, Dutta J (2013) Enhancement of photocatalytic degradation of methyl orange by supported zinc oxide nanorods/zinc stannate (ZnO/ZTO) on porous substrates. Ind Eng Chem Res 52:13629–13636

    Article  CAS  Google Scholar 

  14. Boruah BD (2019) Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors. Nanoscale Adv 1:2059–2085

    Article  Google Scholar 

  15. Zou R, He G, Xu K, Liu Q, Zhang Z, Hu J (2013) ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor, photocatalytic properties. J Mater Chem A 1:8445–8452

    Article  CAS  Google Scholar 

  16. Desai MA, Sharma V, Prasad M, Jadkar S, Saratale GD, Sartale SD (2020) Seed-layer-free deposition of well-oriented ZnO nanorods thin films by SILAR and their photoelectrochemical studies. Int J Hydrog Energy 45:5783–5792

    Article  CAS  Google Scholar 

  17. Ramesh AM, Shivanna S (2021) Hydrothermal synthesis of MoO3/ZnO heterostructure with highly enhanced photocatalysis and their environmental interest. J Environ Chem Eng 9:105040

    Article  CAS  Google Scholar 

  18. Salari H, Sadeghini M (2019) MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. J Photochem Photobiol A 376:279–287

    Article  CAS  Google Scholar 

  19. Dom R, Kim HG, Borse PH (2014) Efficient hydrogen generation over (100)-oriented ZnO nanostructured photoanodes under solar light. CrystEngComm 16:2432

    Article  CAS  Google Scholar 

  20. Iqbal J, Jilani A, Hassan PMZ, Rafique S, Jafer R, Alghamdi AA (2016) ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap. J King Saud Univ Sci 28:347–354

    Article  Google Scholar 

  21. Boyadjiev SI, Georgieva V, Yordanov R, Raicheva Z, Szilágyi IM (2016) Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors. Appl Surf Sci 387:1230–1235

    Article  CAS  Google Scholar 

  22. Hong JI, Bae J, Wang ZL, Snyder RL (2009) Room-temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays. Nanotechnology 20:085609

    Article  CAS  Google Scholar 

  23. Saldaña-Ramírez A, Alfaro Cruz MR, Juárez-Ramírez I, Torres-Martínez LM (2020) Influence of the power density and working pressure in the magnetron co-sputtering deposition of ZnO–SnO2 thin films and their effect in photocatalytic hydrogen production. Optical Mater 110:110501

    Article  CAS  Google Scholar 

  24. Luévano-Hipólito E, Torres-Martínez LM (2017) Sonochemical synthesis of ZnO nanoparticles and its use as photocatalyst in H2 generation. Mater Sci Eng B 226:223–233

    Article  CAS  Google Scholar 

  25. Bai L, Mei J (2020) Low amount of Au nanoparticles deposited ZnO nanorods heterojunction photocatalysts for efficient degradation of p-nitrophenol. J Sol-Gel Sci Technol 94:468–476

    Article  CAS  Google Scholar 

  26. Rajamanickam S, Mohammad SM, Hassan Z (2020) Effect of zinc acetate dihydrate concentration on morphology of ZnO seed layer and ZnO nanorods grown by hydrothermal method, colloids Interface. Sci Commun 38:100312

    CAS  Google Scholar 

  27. Alfaro Cruz MR, Ceballos-Sánchez O, Luevano-Hipólito E, Torres-Martínez LM (2018) ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int J Hydrog Energ 43:10301–10310

    Article  CAS  Google Scholar 

  28. Del Gobbo S, Poolwong J, D’Elia V, Ogawa M (2020) Simultaneous controlled seeded-growth and doping of ZnO nanorods with aluminum and cerium: feasibility assessment and effect on photocatalytic activity. Cryst Growth Des 20:5508–5525

    Article  CAS  Google Scholar 

  29. Zhou W, Lui H, Boughton RI, Du G, Lin J, Wang J, Lui D (2010) One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications. J Mater Chem 20:5993–6008

    Article  CAS  Google Scholar 

  30. Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114:9346–9384

    Article  CAS  Google Scholar 

  31. Kozuka H (2016) Radiative striations in spin-coating films. In: Klein L, Aparicio M, Jitianu A (eds) Handbook of sol-gel science and technology. Springer, Cham

  32. Alfaro Cruz MR, Hernandez-Como N, Mejia I, Ortega Zarzosa G, Martínez Castañón GA, Quevedo-Lopez MA (2014) Electrical, optical, and structural properties of ZnO nanorods thin films deposited over ZnO substrates. Mater Let 133:293–295

    Article  CAS  Google Scholar 

  33. Alfaro Cruz MR, Hernandez-Como N, Mejia I, Ortega-Zarzosa G, Martínez-Castañón GA, Quevedo-López MA (2016) Impact of the annealing atmosphere in the electrical and optical properties of ZnO thin films. J Sol-Gel Sci Technol 79:184–189

    Article  CAS  Google Scholar 

  34. Haidry AA, Puskelova J, Plecenik T, Durina P, Gregus J, Truchly M, Roch T, Zahoran M, Vargova M, Kus P, Plecenik A, Plesch G (2012) Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method. Appl Surf Sci 259:270–275

    Article  CAS  Google Scholar 

  35. Steinebach H, Kannan S, Rieth L, Solzbacher F (2010) H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sens Actuators B Chem 151(151):162

    Article  CAS  Google Scholar 

  36. Malengreaux CH, Léonard GML, Pirard SL, Cimieri I, Lambert SD, Bartlett JR, Heinrichs B (2014) How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. a relation between kinetics, morphology and synthesis. Chem Eng J 243:537–548

    Article  CAS  Google Scholar 

  37. Yang JL, An SJ, Park WI, Yi GC, Choi W (2004) Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater 16:1661–1664

    Article  CAS  Google Scholar 

  38. Yang W, Liu J, Liu M, Liu Y, Wang N, Shen G, Liu Z, He X, Zhang C, Hu L, Fu Y (2019) Fabrication of preferential orientation ZnO thin films with exposed holes by high temperature annealing low-temperature-grown ZnO thin films on different substrates. Supper Lattice Microst 136:106291

    Article  CAS  Google Scholar 

  39. Altintas YO, Hanife A, Savas S (2016) Facile synthesis of cobalt-doped zinc oxide thin films for highly efficient visible light photocatalysts. Appl Surf Sci 390:111–121

    Article  CAS  Google Scholar 

  40. Poongodi G, Anandan P, Mohan Kumar R, Jayavel R (2015) Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method. Spectrochim Acta A 148:237–243

    Article  CAS  Google Scholar 

  41. Dehghan Nayeri F, Asl Soleimani E, Salehi F (2013) Synthesis and characterization of ZnO nanowires grown on different seed layers: the application for dye-sensitized solar cells, Renew. Energy 60:246–255

    Google Scholar 

  42. Beltrán JJ, Barrero CA, Punnoose A (2015) Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys Chem Chem Phys 17:15284–15296

    Article  CAS  Google Scholar 

  43. Singh J, Sharma S, Soni S, Sharma S, Singh RC (2019) Influence of different milling media on structural, morphological, and optical properties of the ZnO nanoparticles synthesized by ball milling process. Mat Sci Semicon Proc 98:29–38

    Article  CAS  Google Scholar 

  44. Sahu K, Choudhary S, Khan SA, Pandey A, Mohapatra S (2019) Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Struct Nano-Obj 17:92–102

    Article  CAS  Google Scholar 

  45. Shaheeraa M, Girija KG, Kaur M, Geetha V, Debnath AK, Vatsa RK, Muthe KP, Gadkari SC (2020) Creation of multiple defect states in RF sputtered lidoped ZnO nanocrystalline thin films. Chem Phys Lett 758:137951

    Article  CAS  Google Scholar 

  46. Hajijamali Z, Khayatian A, Almasi Kashi M (2020) Etching of ZnO nanorods by ZnO nanoparticles and adjustment of morphological and UV photodetection properties. J Sol-Gel Sci Technol 95:109–118

    Article  CAS  Google Scholar 

  47. Singh R, Pal B (2013) Study of excited charge carrier’s lifetime for the observed photoluminescence and photocatalytic activity of CdS nanostructures of different shapes. J Mol Catal A Chem 371:77–85

    Article  CAS  Google Scholar 

  48. Gao Z, Qu X (2020) Construction of ZnTiO3/Bi4NbO8Cl heterojunction with enhanced photocatalytic performance. Nanoscale Res Lett 15:64

    Article  CAS  Google Scholar 

  49. Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization. Phys Chem Chem Phys 7:4147–4163

    Article  CAS  Google Scholar 

  50. Kind H, Yan H, Messer B, Law M, Nanowire PY (2002) Ultraviolet photodetectors and optical switches. Adv Mater 14:158–169

    Article  CAS  Google Scholar 

  51. Mridha S, Basak D (2006) Thickness dependent photoconducting properties of ZnO films. Chem Phys Lett 427:62–66

    Article  CAS  Google Scholar 

  52. Soto-Arreola A, Huerta-Flores AM, Mora-Hernández JM, Torres-Martínez LM (2018) Comparative study of the photocatalytic activity for hydrogen evolution of MFe2O4 (M = Cu, Ni) prepared by three different methods. J Photochem Photobiol A Chem 357:20–29

    Article  CAS  Google Scholar 

  53. Allagui A, Alawadhi H, Alkaaby M, Gaidi M, Mostafa K, Abdulaziz Y (2016) Mott–Schottky analysis of flower-like ZnO microstructures with constant phase element behavior. Phys Status Solidi 213(213):139–145

    Article  CAS  Google Scholar 

  54. Ortiz Rabell G, Alfaro Cruz MR, Juárez-Ramírez I (2021) Hydrogen production of ZnO and ZnO/Ag films by photocatalysis and photoelectrocatalysis. Mat Sci Semicon Proc 134:105985

    Article  CAS  Google Scholar 

  55. Murcia-López S, Moschogiannaki M, Binas V, Andreu T, Tang P, Arbiol J, Jacas Biendicho J, Kiriakidis G, Morante JR (2017) Insights into the performance of CoxNi1–xTiO3 solid solutions as photocatalysts for sun-driven water oxidation. ACS Appl Mater Interfaces 9:40290–40297

    Article  CAS  Google Scholar 

  56. Candal RJ, Bilmes SA, Blesa MA (2004) Eliminación de Contaminantes por Fotocatálisis Heterogénea, 2nd edn, CYTED, Madrid, España

  57. Bolarinwa HS, Onuu MU, Fasasi AY, Alayande SO, Animasahun LO, Abdulsalami IO, Fadodun OG, Egunjobi IA (2017) Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique. J Taibah Univ Sci 11:1245–1258

    Article  Google Scholar 

  58. Ma M, Mont FW, Yan X, Cho J, Schubert F, Kim GB, Sone C (2011) Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Opt Express 19:A1135–A1140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT for the support to the following projects: Cátedras-CONACYT 363, CB-2015-253349, and FC-2016-1725. Thanks to UANL: PAIFIC: 2018-5/2018-8 and PAYCIT: IT637-18/CE865-19/CE1771-21. L.F.G.R. thanks to CONACYT FC-1725 for the fellowship awarded. We also thank Eduardo Martínez Guerra, Alonso Concha Balderrama, and Oscar Vega from CIMAV-Monterrey for his technical support in the XRD, and AFM measurements.

Author contributions

All authors contributed to the study conception and design of this work. M.R.A.C. and L.F.G.R. contribute with the conceptualization, methodology, investigation, writing-original draft, writing-review, and editing. While L.M.T.M. contribute with the conceptualization, project administration, founding acquisition, resources, writing-review, and editing.

Funding

This work was supporting with the following CONACYT projects: Cátedras-CONACYT 363, CB-2015-253349, and FC-2016-1725. Also, UANL was supported part of the work with the projects: PAIFIC: 2018-5/2018-8 and PAYCIT: IT637-18/CE865-19/CE1771-21. Finally, L.F.G.R. has received the fellowship awarded CONACYT FC-1725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia M. Torres-Martínez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfaro Cruz, M.R., Garay-Rodríguez, L.F. & Torres-Martínez, L.M. Analysis of the photocatalytic efficiency of ZnO–ZnO nanorods films deposited by two-step chemical methods in hydrogen generation. J Sol-Gel Sci Technol 103, 267–279 (2022). https://doi.org/10.1007/s10971-022-05804-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05804-1

Keywords

Navigation