Skip to main content
Log in

Magnetic properties and magnetism simulation of SmFe0.5Cr0.5O3 nanoparticles prepared by sol-gel method

  • Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study reported the synthesis process of SmFe0.5Cr0.5O3 by the sol-gel method, and its structure, hyperfine parameters and magnetic properties are also studied. X-ray diffraction (XRD) revealed the Pbnm(62) spatial group characteristics of the nanoscale size and orthogonally distorted perovskite structure of the samples. The Mössbauer spectrum shows the characteristics of trivalent hexacoordinated high spin (s = 5/2) of 57Fe in the sample and the distorted octahedron symmetric structure environment of triangle or quadrilateral. Magnetization data and Mössbauer spectra record magnetic phase transition at about 250 K (TN = 250 K). Under the Néel temperature, the system exhibits a frustrated spin glass state. Monte Carlo simulation of magnetization curves based on 3D Heisenberg model modified by Dzyaloshinskii-Moriya (DM) interaction results in the main exchange constants in the sample (JFe-Cr/kB = 16.04 K) and magnetic phase transition temperature (~250 K).

To explore the magnetic properties and mechanism of SFCO nanoparticles. On the one hand, the temperature dependence of sample magnetization (FC, ZFC-T, 200Oe) and isothermal magnetization (M-H, 5 K) curves show that SFCO is a frustrated system with TN~250K (Figure (a), (b), (c), (d) and (e)). On the other hand, the variable temperature Mössbauer spectra (RT, 250 K, 210 K, 170 K, 100 K) strongly demonstrate the antiferromagnetic transition at about 250K(figure (f)). In addition, the three-dimensional Heisenberg model modified by Dzyaloshinskii- Moriya (DM) was used to simulate its magnetic properties by Monte Carlo method, as shown in Figs. (g), (h) and (i), which showed excellent fitting results (JFe-Cr/kB = 16.04 K), and further supported the existence of magnetic phase transition at about 250 K.

Highlights

  • Preparation of SmFe0.5Cr0.5O3 Perovskite Nanoparticles by Sol-Gel Method.

  • The structure and magnetic properties of the prepared SmFe0.5Cr0.5O3 nanoparticles were characterized by XRD, Mössbauer spectrometer, and VSM.

  • Based on the three-dimensional Heisenberg model modified by Dzyaloshinskii–Moriya interaction, the magnetization curve was simulated by Monte Carlo method to obtain the exchange constant and magnetic ordering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availablity

All data, models, and code generated or used during the study appear in the submitted article

References

  1. Hearne GR, Pasternak MP, Taylor RD, Lacorre P (1995) Electronic structure and magnetic properties of LaFeO3 at high pressure. Phys Rev B 51(17):11495–11500. https://doi.org/10.1103/PhysRevB.51.11495

    Article  CAS  Google Scholar 

  2. Peña MA, Fierro JLG (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101(7):1981–2018. https://doi.org/10.1021/cr980129f

    Article  CAS  Google Scholar 

  3. Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B 73(9):094434

    Article  Google Scholar 

  4. Xiang Z et al. (2018) “Intrinsic structural distortion and exchange interactions in SmFexCr1−xO3 compounds.”. RSC Adv 8(16):8842–8848

    Article  CAS  Google Scholar 

  5. Wang CC et al. (2018) Highly sulfur poisoning-tolerant BaCeO3-impregnated La0.6Sr0.4Co0.2Fe0.8O3-deltacathodes for solid oxide fuel cells. J Phys D-Appl Phys 51(43):435502

    Article  Google Scholar 

  6. Koli PB, Kapadnis KH, Deshpande UG, Tupe UJ, Shinde SG, Ingale RS (2021) Fabrication of thin film sensors by spin coating using sol-gel LaCrO3 Perovskite material modified with transition metalsfor sensing environmental pollutants, greenhouse gases and relative humidity. Environ Chall 3:100043. https://doi.org/10.1016/j.envc.2021.100043

    Article  Google Scholar 

  7. Natali Sora I, Fontana F, Passalacqua R, Ampelli C, Perathoner S, Centi G, Palmisano L (2013) Photoelectrochemical properties of dopedlanthanum orthoferrites. Electrochim Acta 109:710–715. https://doi.org/10.1016/j.electacta.2013.07.132

    Article  CAS  Google Scholar 

  8. Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368. https://doi.org/10.1021/cr500032a

    Article  CAS  Google Scholar 

  9. Fkhar L et al. (2020) Structural, magnetic, and magnetocaloric properties in rare earth orthochromite (Sm, Nd, and La)CrO3 for cooling product”. J Supercond Nov Magn 33(4):1023–1030

    Article  Google Scholar 

  10. Tirupathi P, Reddy HSK (2018) Magnetic and dielectric studies on half-doped orthochromite R(Fe0.5Cr0.5)O3 (R=Gd, Sm) ceramics. AIP Conf Proc 1953(1):050021

    Article  Google Scholar 

  11. Yang H, Hua S, Pan M, Yu Y, Wu Q, Ge H (2019) Magnetic and magnetocaloric properties of K-doped Pr0.5Sr0.5MnO3. J Supercond Nov Magn 32(12):4021–4025. https://doi.org/10.1007/s10948-019-05203-8

    Article  CAS  Google Scholar 

  12. Cao S et al. (2014) Temperature induced spin switching in SmFeO3 single crystal”. Sci Rep. 4(1):5960

    Article  CAS  Google Scholar 

  13. Wang Z-S et al. (2018) Off-stoichiometry indexation of BiFeO3 thin film on silicon by Rutherford backscattering spectrometry. Chin Phys B 27(4):047901

    Article  Google Scholar 

  14. Mao J et al. (2011) Temperature- and magnetic-field-induced magnetization reversal in perovskite YFe0.5Cr0.5O3. Appl Phys Lett 98(19):192510

    Article  Google Scholar 

  15. abdel all Ibrahim SM (2014) Hydrogen storage in proton-conductive perovskite-type oxides and their application. Korean J Chem Eng 31:1792–1797. https://doi.org/10.1007/s11814-014-0081-8

    Article  CAS  Google Scholar 

  16. Marshall LG et al. (2012) Magnetic coupling between Sm3+ and the canted spin in an antiferromagnetic SmFeO3 single crystal. Phys Rev B 86(6):064417

    Article  Google Scholar 

  17. Yu BF et al. (2008) Enhanced electrical properties in multiferroic BiFeO3 ceramics co-doped by La3+ and V5+. J Phys D Appl Phys 41(18):185401

    Article  Google Scholar 

  18. Sahu JR, Serrao CR, Ray N, Waghmare UV, Rao C (2007) Rare earth chromites: a new family of multiferroics. J Mater Chem 17(1):42–44

    Article  CAS  Google Scholar 

  19. Eerenstein W, Mathur N, Scott J (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765. https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  20. Goodenough JB (1955) Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys Rev 100(2):564–573

    Article  CAS  Google Scholar 

  21. Qiao, Yu, Zhou Y, Wang S, Yuan L, Du Y, Lu D, Che H (2017) Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1−xCrxO3 (0.1 ≤ x ≤ 0.9) perovskites. Dalton Trans 46(18):5930–5937. https://doi.org/10.1039/C7DT00032D

    Article  CAS  Google Scholar 

  22. Yin LH et al. (2013) Multiple temperature-induced magnetization reversals in SmCr1−xFexO3 system. Mater Res Bull 48(10):4016–4021

    Article  CAS  Google Scholar 

  23. Liu L et al. (2021) Study on variable temperature Mössbauer spectra of GdFe0.5Cr0.5O3 perovskite. Phase Transit 94(9):627–633

    Article  CAS  Google Scholar 

  24. Boudad L et al. (2019) Structural, morphological, spectroscopic, and dielectric properties of SmFe0.5Cr0.5O3. Mater Today: Proc 13:646–653

    CAS  Google Scholar 

  25. Yin LH et al. (2017) Magnetocaloric effect and influence of Fe/Cr disorder on the magnetization reversal and dielectric relaxation in RFe0.5Cr0.5O3 systems. Appl Phys Lett 110(19):192904

    Article  Google Scholar 

  26. Prasad BV et al. (2015) Dielectric studies of Fe doped SmCrO3 perovskites. IOP Conf Ser: Mater Sci Eng 73:012061

    Article  Google Scholar 

  27. Usman, IB (2010). Synthesis and characterization of Sm-based orthoferrite compounds, SmFe1−xMnxO3 (Doctoral dissertation).

  28. Steen Morup.Paramagnetic and Supermagnetic relaxation phnome-na studied by Mössbauer spectroscopy. Denmark; Polyteknisk for-lag,1980.

  29. Eibschütz M, Shtrikman S, Treves D (1967) Mössbauer studies of 57Fe in orthoferrites. Phys Rev 156(2):562–577.cc28

    Article  Google Scholar 

  30. Nishihara Y (1975) Effect of nearest neighbor ions on the hyperfine fields at 57Fe nuclei in TbFe1−xCrxO3. J Phys Soc Jpn 38(3):710–717

    Article  CAS  Google Scholar 

  31. Mandal P et al. (2012) Structure and complex magnetic behavior of disordered perovskite (Bi0.5Sr0.5)(Fe0.5Mn0.5)O3. RSC Adv 2(1):292–297

    Article  CAS  Google Scholar 

  32. Li L, Song X, Su W et al. (1998) The influence of substitution of Mn ions onquadrupole splitting of EuFeO3 perovskite oxide. Hyperfine Interact 116:167–172

    Article  CAS  Google Scholar 

  33. Shi J et al. (2020) Antiferromagnetic and dielectric behavior in polycrystalline GdFe0.5Cr0.5O3 thin film. APL Mater 8(3):031106

    Article  CAS  Google Scholar 

  34. Qiao Y et al. (2017) Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1−xCrxO3 (0.1 ≤ x ≤ 0.9) perovskites.”. Dalton Trans 46(18):5930–5937

    Article  CAS  Google Scholar 

  35. Dadami ST et al. (2019) Effect of electric poling on structural, magnetic and ferroelectric properties of 0.8PbFe0.5Nb0.5O3-0.2BiFeO3 multiferroic solid solution. Ceram Int 45(10):13171–13171

    Article  CAS  Google Scholar 

  36. Yuksel Y (2015) Monte Carlo simulation of Prussian blue analogs described by Heisenberg ternary alloy model. J Phys Chem Solids 86:207–214

    Article  CAS  Google Scholar 

  37. Sun GH, Kong XM (2006) Phase diagram and tricritical behavior of the spin-1 heisenberg model with Dzyaloshinskii–Moriya interactions. Phys A Stat Mech Its Appl 370(2):585–590

    Article  Google Scholar 

Download references

Funding

The research was supported partly by National Natural Science Foundation of China (grant number 12105137), the Natural Science Foundation of Hunan Province, China (Grant number 2020JJ4517), Research Foundation of Education Bureau of Hunan Province, China (Grant number 19C1621,19A434),the National Undergraduate Innovation and Entrepreneurship Training Program Support Projects of China (Grant Nos. 20200112, 202110555026).

Author information

Authors and Affiliations

Authors

Contributions

Lebin Liu and Min Liu conceived and designed the experiments. Lebin Liu and Shiyu Xu carried out the XRD and Mössbauer Spectroscopy experiments. Lebin Liu and JIajun Mo analyzed the data and performed the Heisenberg model Monte Carlo simulation and their analysis. Weiyi Liu supervised the project. Lebin Liu, Jiajun Mo, Xudong Han and Jingzhi Liu wrote the paper. All authors discussed the results and contributed to the paper.

Corresponding author

Correspondence to Min Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Mo, J., Han, X. et al. Magnetic properties and magnetism simulation of SmFe0.5Cr0.5O3 nanoparticles prepared by sol-gel method. J Sol-Gel Sci Technol 101, 588–595 (2022). https://doi.org/10.1007/s10971-022-05745-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05745-9

Keywords

Navigation