Skip to main content
Log in

Impact of Cd2+ substitution on the structural and magnetic peculiarities of MnZn nanospinel ferrites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, the synthesis of Mn0.5Zn0.5CdxFe2-xO4 (0.0 ≤ x ≤ 0.5) nanoparticles (MnZnCd ferrite NPs) were achieved by sol-gel combustion approach. The results of the cadmium contribution on structural, morphological, and magnetic properties have been researched. X-ray diffraction (XRD) patterns of nanocomposites confirmed the co-existence of cubic spinel ferrite phases. TEM images of the nanoparticles confirmed the cubical structure with agglomeration to a certain extent. The average particle size of the products was calculated as around 14 nm. Magnetic peculiarities of the MnZnCd ferrite NPs were assessed by using a VSM instrument at RT and 10 K. Samples showed ferromagnetic behavior at both measurement temperatures. The various magnetic parameters for the produced nanocomposites were determined. It is found that the magnetization value (Ms) increases for lower Cd2+ doping content and decreases afterward. The changes in magnetic parameters were ascribed to numerous factors like the distribution of cations, the A-B super-exchange interactions, and the purity of samples.

Graphical abstract

Highlights

  • Mn0.5Zn0.5CdxFe2-xO4 nanoparticles were prepared via sol–gel combustion approach.

  • MnZnCd ferrite NPs showed ferromagnetic behavior.

  • Magnetic interpretation of Cd2+ doping to Mn0.5Zn0.5Fe2O4 host material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li LZ, Zhong XX, Wang R, Tu XQ, He L (2018) Effects of Al substitution on the properties of NiZnCo ferrite nanopowders. J Mater Sci Mater Electron 29:7233–7238

    Article  CAS  Google Scholar 

  2. Rahman MT, Vargas M, Ramana CV (2014) Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite. J Alloy Compd 617:547–562

    Article  CAS  Google Scholar 

  3. Mustafa G, Islam MU, Zhang W, Jamil Y, Anwar AW, Hussain M, Ahmad M (2015) Investigation of structural and magnetic properties of Ce3+ substituted nanosized Co-Cr ferrites for a variety of applications. J Alloy Compd 618:428–436

    Article  CAS  Google Scholar 

  4. Thakur P, Chahar D, Taneja S, Bhalla N, Thakur A (2020) A review on MnZn ferrites: Synthesis, characterization and applications. Ceram Int 46:15740–15763

    Article  CAS  Google Scholar 

  5. Islam R, Hakim MA, Rahman MO, Narayan Das H, Mamun MA (2013) Study of the structural, magnetic and electrical properties of Gd-substituted Mn-Zn mixed ferrites. J Alloy Compd 559:174–180

    Article  CAS  Google Scholar 

  6. Töpfer J, Angermann A (2015) Complex additive systems for Mn-Zn ferrites with low power loss. J Appl Phys 117:17A504

    Article  Google Scholar 

  7. Mitrović NS, Zlatkov BS, Nikolić MV, Maričić AM, Aleksić OS, Djukić SR, Danninger H (2012) Soft magnetic properties of MnZn ferrites prepared by powder injection moulding. Sci Sinter 44:355–364

    Article  Google Scholar 

  8. Verma A, Alam MI, Chatterjee R, Goel TC, Mendiratta RG (2006) Development of a new soft ferrite core for power applications. J Magn Magn Mater 300:500–505

    Article  CAS  Google Scholar 

  9. Patel J, Parekh K, Upadhyay RV (2017) Performance of Mn-Zn ferrite magnetic fluid in a prototype distribution transformer under varying loading conditions. Int J Therm Sci 114:64–71

    Article  CAS  Google Scholar 

  10. Wolska E, Wolski W, Piszora P, Pietrusik M, Subrt J, Grygar T, Nejezchleba M (1999) X-ray powder diffraction and Mossbauer studies on the formation of Cd0.5Ni0.5Fe2O4/Zn0.5Ni0.5Fe2O4 spinel solid solutions. Int J Inorg Mater 1:187–192

    Article  CAS  Google Scholar 

  11. Prasad MSR, Prasad BBVSV, Rajesh B, Rao KH, Ramesh KV (2011) Magnetic properties, and DC electrical resistivity studies on cadmium substituted nickel-zinc ferrite system. J Magn Magn Mater 323:2115–2121

    Article  Google Scholar 

  12. Nath SK, Maria KH, Noor S, Sikder SS, Hoque SM, Hakim MA (2012) Magnetic ordering in Ni–Cd ferrite. J Magn Magn Mater 324:2116–2120

    Article  CAS  Google Scholar 

  13. Kulkarni RG, Panicker VG (1984) Study of canted spin structure in Cu–Cd ferrite. J Mater Sci 19:890–894

    Article  CAS  Google Scholar 

  14. Zahir R, Chowdhury FUZ, Uddin MM, Hakim MA (2016) Structural, magnetic and electrical characterization of Cd-substituted Mg ferrites synthesized by double sintering technique. J Magn Magn Mater 10:55–62

    Article  Google Scholar 

  15. Venkataraju C, Sathishkumar G, Sivakumar K (2011) Effect of Cd on the structural, magnetic, and electrical properties of nanostructured Mn-Zn ferrite. J Magn Magn Mater 323:1817–1822

    Article  CAS  Google Scholar 

  16. Hammadoui N, Kalandaragh YA, Khlifi M, Beji L (2019) Cd doping effect on morphologic, structural, magnetic, and electrical properties of Ni0.6-xCdxMg0.4Fe2O4 spinel ferrite (0 ≤ x ≤ 0.4). J Alloy Compd 803:964–970

    Article  Google Scholar 

  17. Saha DK, Hakim MA (2008) Dielectric properties, resistivity and Curie temperature of Co doped CdNi perminvar ferrite. J Bangladesh Acad Sci 32(1):23–32

    Article  CAS  Google Scholar 

  18. Alahmari F, Almessiere MA, Ünal B, Slimani Y, Baykal A (2020) Electrical and optical properties of Ni0.5Co0.5-xCdxNd0.02Fe1.78O4 (x ≤ 0.25) spinel ferrite nanofibers. Ceram Int 46:24605–24616

    Article  CAS  Google Scholar 

  19. Alagha O, Ouerfelli N, Kochkar H, Almessiere MA, Slimani Y, Manikandan A, Baykal A, Mostafa A, Zubair M, Barghouthi MH (2021) Kinetic modeling for photo-assisted penicillin G Degradation of (Mn0.5Zn0.5)[CdxFe2-x]O4 (x ≤ 0.05) Nanospinel Ferrites. Nanomaterials 11:970

    Article  CAS  Google Scholar 

  20. Ajaz M, Nabi UN, Moin M, Hasan MS, Arshad MI, Bibi A, Amin N, Mahmood K, Ali SS (2021) Study of electrical transport properties of Cadmium-Doped Zn–Mn soft ferrites by Co-precipitation method. J Super Cond Nov Magn 34:1813–1822

    Article  Google Scholar 

  21. Anwar H, Maqsood A (2013) Enhancement of electrical and magnetic properties of Cd2+ doped Mn–Zn soft nanoferrites prepared by the sol–gel autocombustion method. J Magn Magn Mater 333:46–52

    Article  CAS  Google Scholar 

  22. Sharma M, Kashyap SC, Gupta HC (2014) Effect of Mg–Zr substitution and microwave processing on magnetic properties of barium hexaferrite. Phys B 448:24–28

    Article  CAS  Google Scholar 

  23. Almessiere MA, Slimani Y, Baykal A (2018) Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram Int 44:9000–9008

    Article  CAS  Google Scholar 

  24. Yan S, Geng J, Chen J, Yin L, Zhou Y, Liu L, Zhou E (2005) A study of NiZnCu-ferrite/SiO2 nanocomposites with different ferrite contents synthesized by sol–gel method. J Magn Magn Mater 292:304–309

    Article  CAS  Google Scholar 

  25. Shehata MM, Waly SA, Farid O, Ghazy O, Ali ZI (2021) Effect of γ-rays irradiation on structural and magnetic properties of Cd–Mn nanoferrites synthesized via sol-gel auto-combustion method. Radiat Phys Chem 184:109429

    Article  CAS  Google Scholar 

  26. BD Cullity, CD Graham (2009) Introduction to Magnetic Materials, Wiley, Hoboken.

  27. M Dalal (2017) A Textbook of Inorganic Chemistry, Vol 1, 1st ed., Dalal Institute.

  28. Akhter S, Hakim, MA (2010) Magnetic properties of cadmium substituted lithium ferrites. Mater Chem Phys 120:401

    Article  Google Scholar 

  29. Ch. V. Reddy, Byon C, Narendra B, Baskar D, Srinivas G, Jaesool Shim SV (2015) Prabhakar Vattikuti, Investigation of structural, thermal and magnetic properties of cadmium substituted cobalt ferrite nanoparticles. Superlattice Microst 82:165–173

    Article  Google Scholar 

  30. Thakur SS, Pathania A, Thakur P, Thakur A, Hsu J-H (2015) Improved structural, electrical and magnetic properties of Mn–Zn–Cd nanoferrites. Ceram Int 41:5072–5078

    Article  CAS  Google Scholar 

  31. Kaur M, Rana S, Tarsikka PS (2012) Comparative analysis of cadmium doped magnesium ferrite Mg(1−x)CdxFe2O4 (x = 0.0, 0.2, 0.4, 0.6) nanoparticles,. Ceram Int 38:4319–4323

    Article  CAS  Google Scholar 

  32. Majid F, Rauf J, Ata S, Bibi I, Malik A, Ibrahim SM, Ali A, Iqbal M (2021) Synthesis and characterization of NiFe2O4 ferrite: Sol–gel and hydrothermal synthesis routes effect on magnetic, structural, and dielectric characteristics. Mater Chem Phys 258:123888

    Article  CAS  Google Scholar 

  33. del Muro MG, Batlle X, Labarta, A (1999) Erasing the glassy state in magnetic fine particles. Phys Rev B 59:13584

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sertkol.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sertkol, M. Impact of Cd2+ substitution on the structural and magnetic peculiarities of MnZn nanospinel ferrites. J Sol-Gel Sci Technol 101, 539–545 (2022). https://doi.org/10.1007/s10971-022-05740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05740-0

Keywords

Navigation