Skip to main content

Advertisement

Log in

Preparation of PVA/starch hydrogel and its in-vitro drug release potential against pus-inducing pathogenic strain and breast cancer cell line

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The starch was blended with poly(vinyl) alcohol (PVA) to develop PVA/starch (PS) hydrogel. The physical interaction of PVA with starch was concluded by FTIR and XRD techniques. The thermal decomposition behavior of PS hydrogel was analyzed by thermogravimetric analysis. The swelling index and moisture loss analysis was carried out to comprehend the water absorption and retention behavior of PS hydrogel. The PS hydrogel was biocompatible with RBC due to its lower hemolysis value. The curcumin-loaded PS hydrogel showed an excellent anticancer activity against breast cancer cell line. The antibacterial activity of cephalosporin-loaded PS hydrogel was evaluated against the Staphylococcus aureus.

Graphical abstract

Highlights

  • The PVA/mannitol hydrogel was prepared to study its drug delivery potential.

  • The PM hydrogel effectively delivered the drugs against MCF-7 and pathogenic strains.

  • The PM hydrogel exhibited an excellent water retention ability.

  • The prepared PM hydrogel was non-hemolytic to red blood cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  2. Kurhade S, Momin M, Khanekar P, Mhatre (2013) Novel biocompatible honey hydrogel wound healing sponge for chronic ulcers. Int J Drug Deliv 5:353–361

    Google Scholar 

  3. Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW (2009) Growth factor delivery approaches in hydrogels. Biomacromolecules Biomacromol 10(1):9–18. https://doi.org/10.1021/Bm801103c

    Article  Google Scholar 

  4. Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor–separator combining an anion exchange membrane and immobilized urease. J Chem Technol Biotechnol 61:351–357

    Article  CAS  Google Scholar 

  5. Hyon SH, ChaWI, Ikada Y, KitaM, Ogura Y, Honda Y (1994) Poly (vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5:397–406. https://doi.org/10.1163/156856294x00103

    Article  CAS  Google Scholar 

  6. Shan J, Liu S, Wenhao F (2011) PVA hydrogels properties for biomedical application. J Mech Behav Biomed Mater J Mech Behav Biomed Mat 4(7):1228–1233. https://doi.org/10.1016/j.jmbbm.2011.04.005

    Article  CAS  Google Scholar 

  7. Yi H, Chen C, Kemin L, Ying T, Zhang L, Yubao L (2015) Preparation of PVA hydrogel with high transparency and investigations of its transparent mechanism. RSC Adv 31(5):24023–24030. https://doi.org/10.1039/C5RA01280E

    Article  CAS  Google Scholar 

  8. Peng L, Zhou Y, Lu W et al. (2019) Characterization of a novel polyvinyl alcohol/chitosan porous hydrogel combined with bone marrow mesenchymal stem cells and its application in articular cartilage repair. BMC Musculoskelet Disord 20:257. https://doi.org/10.1186/s12891-019-2644-7

    Article  CAS  Google Scholar 

  9. Anuj K, Sung SH (2016) PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomater Int J Polym Mat Polym Biomat 66(4):159–182. https://doi.org/10.1080/00914037.2016.1190930

    Article  CAS  Google Scholar 

  10. Elbadawy AK, El-Refaie SK, Xin C (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressing. J Adv Res 8(3):217–233. https://doi.org/10.1016/j.jare.2017.01.005

    Article  CAS  Google Scholar 

  11. Shitole AA, Raut PW, Khandwekar A et al. (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26:201. https://doi.org/10.1007/s10965-019-1874-6

    Article  CAS  Google Scholar 

  12. Bahadoran M, Shamloo A, Nokoorani YD (2020) Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing. Sci Rep. 10:7342. https://doi.org/10.1038/s41598-020-64480-9

    Article  CAS  Google Scholar 

  13. Liu C, Gan X, Chen Y (2010) A novel pH‐sensitive hydrogels for potential colon‐specific drug delivery: Characterization and in-vitro release studies. Starch Stark 63(8):503–511. https://doi.org/10.1002/star.201000120

  14. Kunal P, Ajith B, Dipak KM (2006) Preparation of transparent starch based hydrogel membrane wit potential application as wound dressing. Trend Biomat Artif Organ 20(1):59–57

    Google Scholar 

  15. Vijaya SW, Pallavi RW, Sathish D, Aparna D, Ratnesh J, Prajakta D (2018) Starch based nanofibrous scaffolds for wound dressing applications Bioact Mater Bioact Mater 3(3):255–266. https://doi.org/10.1016/j.bioactmat.2017.11.006

    Article  Google Scholar 

  16. Awais H, Niazi MBK, Arshad H, Sarah F, Tahir A (2018) Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ 26:235–243. https://doi.org/10.1007/s10924-017-0944-2

    Article  CAS  Google Scholar 

  17. Hwang M-R, Kim JO, Lee JH et al. (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11:1092–1103. https://doi.org/10.1208/s12249-010-9474-0

    Article  CAS  Google Scholar 

  18. Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/ PVA blended hydrogel membranes. J Membr Sci 236:39–51. https://doi.org/10.1016/j.memsci.2004.02.005

    Article  CAS  Google Scholar 

  19. Dominique LW, Isabel S, Giovanna F (2020) Starch-based hydrogels produced by high-pressure processing (HPP): effect of the Starch Source and Processing Time. Food Eng Review https://doi.org/10.1007/s12393-020-09264-7

  20. Tianxue Z, Jiajun M, Yan C, Haoran L, Lu L, Mingzheng G, Shuhui L, Jianying H, Zhong C, Huaqiong L, Lei Y, Yuekun L (2019) Recent progress of polysaccharide‐based hydrogel interfaces for wound healing and tissue engineering. Advan Mat Inter 6(17):e1900761. https://doi.org/10.1002/admi.201900761

    Article  CAS  Google Scholar 

  21. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Kumar PS, Daramola MO (2019) Enhancement in thermal, mechanical and electrical properties of novel PVA nanocomposite embedded with SrO nanofillers and the analysis of its thermal degradation behavior by nonisothermal approach. Poly Compos 1–14. https://doi.org/10.1002/pc.25453

  22. Huafeng T, Jiaan Y, Varada R, Aimin X, Xiaogang L (2017) Fabrication and properties of polyvinyl alcohol/starch blend films: effect of composition and humidity. Int J Biol Macromol 96:518–523. https://doi.org/10.1016/j.ijbiomac.2016.12.067

    Article  CAS  Google Scholar 

  23. Jeiffer FV, José GE, Vidala MV, Jorgelina P, Pedro MC, Henry ALM (2018) Chemical Modification and Characterization of Starch Derived from Plantain (Musa paradisiaca) Peel Waste, as a Source of Biodegradable Material, Chemical Engineering Transactions. Chem Eng Transact 65 https://doi.org/10.3303/CET1865128

  24. Selvi J, Parthasarathy V, Mahalakshmi S, Anbarasan R, Daramola MO, Senthil KP (2020) Optical, electrical, mechanical, and thermal properties and non-isothermal decomposition behavior of poly(vinyl alcohol)—ZnO nanocomposites. Iran Polym J 29:411–422. https://doi.org/10.1007/s13726-020-00806-8

    Article  CAS  Google Scholar 

  25. Ng KW, Achuth HN, Moochhala S, Lim TC, Hutmacher DW (2007) In vivo evaluation of an ultra-thin polycaprolactone film as a wound dressing J Biomat Sci Polym Ed 18(7):925–938. https://doi.org/10.1163/156856207781367693

    Article  CAS  Google Scholar 

  26. Bárbara B, Wyller MF, Rosana C, Shanise L, Loong-Tak L, Álvaro RG, Elessandra Z (2018) Starch hydrogels: the influence of the amylose content and gelatinization method. Intern J Biol Macromol 113:443–449. https://doi.org/10.1016/j.ijbiomac.2018.02.144

    Article  CAS  Google Scholar 

  27. Todor TK, Juan CMG, DinuIuga YZ, Khimyak FJW (2020) Structural heterogeneities in starch hydrogels. Carb Polym 249:116834. https://doi.org/10.1016/j.carbpol.2020.116834

    Article  CAS  Google Scholar 

  28. Tavakoli J, Mirzaei S, Tang Y (2018) Cost-effective double-layer hydrogel composites for wound dressing applications. Polymer 10(3):305. https://doi.org/10.3390/polym10030305

    Article  CAS  Google Scholar 

  29. Kerong Y, Qing H, Bingpeng C, Yuhao Z, Kesong Z, Qiang L, Jincheng W (2017) Antimicrobial hydrogels: promising materials for medical application. Int J Nanomed 13:2217–2263. https://doi.org/10.2147/IJN.S154748

  30. Parviz DM, Shiva AB, Saeed M, Foad K, Nasser N, Mohsen N, Seyed AM (2020) Synthesis, characterization, and in-vitro evaluation of the starch-based α-amylase responsive hydrogels. J Cell Phy 236(5):4066–4075. https://doi.org/10.1002/jcp.30148

  31. Jun-Li L, Yan-Y P, Ou C, Yun L, Xia X, Jing-Jie Z, Ling L, Hong-Ying J (2017) Curcumin inhibits MCF-7 cells by modulating the NF-κB signaling pathway Oncol Lett 14(5):5581–5584. https://doi.org/10.3892/ol.2017.6860

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Parthasarathy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankarganesh, P., Parthasarathy, V., Kumar, A.G. et al. Preparation of PVA/starch hydrogel and its in-vitro drug release potential against pus-inducing pathogenic strain and breast cancer cell line. J Sol-Gel Sci Technol 101, 571–578 (2022). https://doi.org/10.1007/s10971-022-05735-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-022-05735-x

Keywords

Navigation