Skip to main content
Log in

Sol-gel synthesis of TiO2-SiO2 hybrid films with tunable refractive index for broadband antireflective coatings covering the visible range

  • Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A series of TiO2-SiO2 composite sols have been synthesized using titanium (IV) isopropoxide and tetraethyl orthosilicate as precursors under acidic conditions. The stability of the binary sols is improved by a prehydrolysis step of tetraethyl orthosilicate. Assisted by heat treatment, the refractive index of the TiO2-SiO2 hybrid films obtained can be tuned in a wide range. On the basis of film optical constants derived from fitting of transmittance spectrum, two types of antireflection coatings with quarter-half and quarter-half-quarter multilayer structures are designed, and ordered mesoporous SiO2 film and dense SiO2 film are proposed to be used as the top layer, respectively. According to theoretical design requirements, the two antireflection coatings are successfully constructed by selecting the TiO2-SiO2 films with appropriate refractive index as the other layers. The average transmittance of the triple-layer coating at 400–800 nm is 98.74%, and that of the double-layer coating even reaches 99%. Meanwhile, the two types of multilayer coatings show good mechanical properties, which benefit from the tough skeleton of each layer. X-ray reflectivity measurements were also performed on the multilayer structures and the obtained thickness of each layer is consistent with that in the theoretical design. The results show that precise control of film thickness and refractive index is achievable using sol-gel techniques. Owing to excellent control on sol composition, the practical sol-gel route has high potential for the production of antireflective coatings.

The double-layer and triple-layer broadband antireflection coatings are successfully constructed based on the optimal combination of TiO2-SiO2 hybrid films and SiO2 films by dip coating.

Highlights

  • Stable TiO2-SiO2 binary sols with wide range of Ti/Si ratio were obtained by a facile sol-gel process.

  • TiO2-SiO2 hybrid films can satisfy the design requirements of the λ/4-λ/2 double-layer and λ/4-λ/2-λ/4 triple-layer antireflection coatings.

  • Both double-layer and triple-layer antireflection coatings present excellent performance over the entire visible region.

  • The high transmittance and the good abrasion-resistance endow the two multilayer coatings with great potential for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ye L, Zhang X, Zhang Y, Li Y, Zheng W, Jiang B (2016) Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. J Sol-Gel Sci Technol 80(1):1–9. https://doi.org/10.1007/s10971-016-4051-y

    Article  CAS  Google Scholar 

  2. Li Y, Yang K, Xia B, Yang B, Yan L, He M, Yan H, Jiang B (2017) Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol-gel technique. Rsc Adv 7(24):14660–14668. https://doi.org/10.1039/c7ra00844a

    Article  CAS  Google Scholar 

  3. Li D, Wan D, Zhu X, Wang Y, Han Z, Han S, Shan Y, Huang F (2014) Broadband antireflection TiO2-SiO2 stack coatings with refractive-index-grade structure and their applications to Cu(In, Ga)Se-2 solar cells. Sol Energy Mater Sol Cells 130:505–512. https://doi.org/10.1016/j.solmat.2014.07.042

    Article  CAS  Google Scholar 

  4. Heavens OS (1986) Thin-film Optical Filters. Opt Acta: Int J Opt 33(11):1336. https://doi.org/10.1080/716099696

    Article  Google Scholar 

  5. Zhao W, Jia H, Wang Y, Wang Q, Wu H, Wang B (2019) Design and realization of antireflection coatings for the visible and the infrared based on mesoporous SiO2 and SiO2-TiO2 hybrid materials. Appl Opt 58(9):2385–2392. https://doi.org/10.1364/AO.58.002385

    Article  CAS  Google Scholar 

  6. Ye L, Zhang Y, Zhang X, Hu T, Ji R, Ding B, Jiang B (2013) Sol-gel preparation of SiO2/TiO2/SiO2-TiO2 broadband antireflective coating for solar cell cover glass. Sol Energy Mater Sol Cells 111:160–164. https://doi.org/10.1016/j.solmat.2012.12.037

    Article  CAS  Google Scholar 

  7. Zou L, Li X, Zhang Q, Shen J (2014) An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method. Langmuir: ACS J Surf colloids 30(34):10481–10486. https://doi.org/10.1021/la502397e

    Article  CAS  Google Scholar 

  8. Zhang X, Xia B, Ding B, Zhang Y, Luo J, Jiang B (2013) Ultra-fast surface hydrophobic modification of sol-gel silica antireflective coating with enhanced abrasion-resistance. Mater Lett 104:31–33. https://doi.org/10.1016/j.matlet.2013.04.016

    Article  CAS  Google Scholar 

  9. Wang J, Zhang C, Yang C, Zhang C, Wang M, Zhang J, Xu Y (2017) Superhydrophilic antireflective periodic mesoporous organosilica coating on flexible polyimide substrate with strong abrasion-resistance. ACS Appl Mater interfaces 9(6):5468–5476. https://doi.org/10.1021/acsami.6b14117

    Article  CAS  Google Scholar 

  10. Wang X, Shen J (2011) A review of contamination-resistant antireflective sol-gel coatings. J Sol-Gel Sci Technol 61(1):206–212. https://doi.org/10.1007/s10971-011-2615-4

    Article  CAS  Google Scholar 

  11. Sun J, Zhang Q, Ding R, Lv H, Yen H, Yuan X, Xu Y (2014) Contamination-resistant silica antireflective coating with closed ordered mesopores. Phys Chem Chem Phys 16(31):16684–16693. https://doi.org/10.1039/c4cp01032a

    Article  CAS  Google Scholar 

  12. Grosso D, Cagnol F, Soler-Illia GJDAA, Crepaldi EL, Amenitsch H, Brunet-Bruneau A, Bourgeois A, Sanchez C (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14(4):309–322. https://doi.org/10.1002/adfm.200305036

    Article  CAS  Google Scholar 

  13. Wang S, Li C, Copeland L, Niu Q, Wang S (2015) Starch retrogradation: a comprehensive review. Compr Rev Food Sci Food Saf 14(5):568–585. https://doi.org/10.1111/1541-4337.12143

    Article  CAS  Google Scholar 

  14. Liang L, Xu Y, Wu D, Sun Y (2009) A simple sol-gel route to ZrO2 films with high optical performances. Mater Chem Phys 114(1):252–256. https://doi.org/10.1016/j.matchemphys.2008.09.007

    Article  CAS  Google Scholar 

  15. Méndez-Vivar J, Mendoza-Serna R, Valdez-Castro L (2001) Control of the polymerization process of multicomponent (Si, Ti, Zr) sols using chelating agents. J Non Crystalline Solids 288(1-3):200–209. https://doi.org/10.1016/S0022-3093(01)00644-5

    Article  Google Scholar 

  16. Kumar DA, Shyla JM, Xavier FP (2012) Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Appl Nanosci 2(4):429–436. https://doi.org/10.1007/s13204-012-0060-5

    Article  CAS  Google Scholar 

  17. Ren J, Li Z, Liu S, Xing Y, Xie K (2008) Silica-Titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and Surface acidic properties. Catal Lett 124(3-4):185–194. https://doi.org/10.1007/s10562-008-9500-y

    Article  CAS  Google Scholar 

  18. Ahn KH, Park YB, Park DW (2003) Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP. Surf Coat Technol 171(1-3):198–204. https://doi.org/10.1016/S0257-8972(03)00271-8

    Article  CAS  Google Scholar 

  19. Li Y, Xia B, Jiang B (2018) Thermal-induced durable superhydrophilicity of TiO2 films with ultra-smooth surfaces. J Sol-Gel Sci Technol 87(1):50–58. https://doi.org/10.1007/s10971-018-4684-0

    Article  CAS  Google Scholar 

  20. Lin C, Yeh M, Chen C, Sudhakar S, Luo S, Hsu Y, Huang C, Ho K, Luh T (2007) Silica-titania-based organic-inorganic hybrid materials for photovoltaic applications. Chem Mater 18(No.17):4157–4162. https://doi.org/10.1021/cm0602693

    Article  CAS  Google Scholar 

  21. Fang Q, Meier M, Yu J, Wang Z, Zhang J, Wu J, Kenyon A, Hoffmann P (2003) FTIR and XPS investigation of Er-doped SiO2-TiO2 films. Mater Sci Eng 105(1-3):209–213. https://doi.org/10.1016/j.mseb.2003.08.047

    Article  CAS  Google Scholar 

  22. Misran H, Salim MA, Ramesh S (2018) Effect of Ag nanoparticles seeding on the properties of silica spheres. Ceram Int 44(6):5901–5908. https://doi.org/10.1016/j.ceramint.2017.12.118

    Article  CAS  Google Scholar 

  23. Hashemi A, Bahari A (2017) Structural and dielectric characteristic of povidone-silica nanocomposite films on the Si(n) substrate. Appl Phys a-Mater Sci Process 123(8):535. https://doi.org/10.1007/s00339-017-1152-6

    Article  CAS  Google Scholar 

  24. Jnido G, Ohms G, Vioel W (2019) Deposition of TiO2 thin films on wood substrate by an air atmospheric pressure plasma jet. Coatings 9(7):441. https://doi.org/10.3390/coatings9070441

    Article  CAS  Google Scholar 

  25. Tizjang V, Montazeri-Pour M, Rajabi M, Kari M, Moghadas S (2015) Surface modification of sol-gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2-SiO2 nano-composites with reduced photo-catalytic activity. J Mater Sci-Mater Electron 26(5):3008–3019. https://doi.org/10.1007/s10854-015-2791-z

    Article  CAS  Google Scholar 

  26. Mazinani B, Beitollahi A, Radiman S, Masrom AK, Ibrahim SM, Javadpour J, Jamil FMD (2012) The effects of hydrothermaltemperature on structural and photocatalytic properties of ordered large poresize TiO2-SiO2 mesostructured composite J Alloys Comp 519(2012):72–76. https://doi.org/10.1016/j.jallcom.2011.12.051

  27. Lu M, Sun Y, Zhang P, Zhu J, Li M, Shan Y, Shen J, Song C (2019) Hydrodeoxygenation of guaiacol catalyzed by high-loading Ni catalysts supported on SiO2-TiO2 binary oxides. Ind Eng Chem Res 58(4):1513–1524. https://doi.org/10.1021/acs.iecr.8b04517

    Article  CAS  Google Scholar 

  28. Lu H-T, Huang S-L, Tseng IH, Lin Y-K, Tsai M-H (2013) Properties of polyimide hybrids with mixed metal oxide. J Appl Polym Sci 127(1):145–153. https://doi.org/10.1002/app.37865

    Article  CAS  Google Scholar 

  29. Kojio K, Nozaki S, Takahara A, Yamasaki S (2019) Control of mechanical properties of polyurethane elastomers synthesized with aliphatic diisocyanate bearing a symmetric structure. Elastomers Compos 54(4):271–278. https://doi.org/10.7473/ec.2019.54.4.271

    Article  CAS  Google Scholar 

  30. Hashimoto T, Koizumi S (2012) Combined small-angle scattering for characterization of hierarchically structured polymer systems over nano-to-micron meter: part ii theory. polymer science: A Comprehensive Reference, Amsterdam, Elsevier, pp. 399-409. https://doi.org/10.1016/B978-0-444-53349-4.00032-7

  31. Penttila PA, Imai T, Capron M, Mizuno M, Amano Y, Schweins R, Sugiyama J (2018) Multimethod approach to understand the assembly of cellulose fibrils in the biosynthesis of bacterial cellulose. Cellulose 25(5):2771–2783. https://doi.org/10.1007/s10570-018-1755-x

    Article  CAS  Google Scholar 

  32. Trabelsi S, Janke A, Hassler (2005) Novel organo-functional titanium-oxo-cluster-based hybrid materials with enhanced thermomechanical and thermal properties. Macromolecules 38(14):6068–6078. https://doi.org/10.1021/ma0507239

    Article  CAS  Google Scholar 

  33. Beaucage G, Schaefer D, Ulibarri T, Black E (1995) Multiple size scale structures in silica-siloxane composites Studied by small-angle scattering. ACS Sympousium Series, pp. 97-151 https://doi.org/10.1021/bk-1995-0585.ch009

  34. Urbach F (1953) The Long-Wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev 92(5):1324. https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  35. Ferlauto AS, Ferreira GM, Pearce JM, Wronski CR, Collins RW, Deng X, Ganguly G (2002) Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics. J Appl Phys 92(5):2424–2436. https://doi.org/10.1063/1.1497462

    Article  CAS  Google Scholar 

  36. Stenzel O (2005) Extended details: gradient index films and multilayers. In The physics of thin film optical spectra: an introduction. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 125-140. https://doi.org/10.1007/3-540-27905-9_8

  37. Louis B, Krins N, Faustini M, Grosso D (2011) Understanding crystallization of anatase into binary SiO2/TiO2 sol-gel optical thin films: an in situ thermal ellipsometry analysis. J Phys Chem C 115(7):3115–3122. https://doi.org/10.1021/jp109653p

    Article  CAS  Google Scholar 

  38. Liang L, Xu Y, Lei Z, Sheng Y, Sun Y (2007) Annealing effect on the optical properties and laser-induced damage resistance of sol-gel-derived ZrO2 films. J Optical Soc Am B 24(5):1066–1074. https://doi.org/10.1364/JOSAB.24.001066

    Article  CAS  Google Scholar 

  39. Tate MP, Urade VN, Kowalski JD, Wei T-C, Hamilton BD, Eggiman BW, Hillhouse HW (2006) Simulation and interpretation of 2D diffraction patterns from self-assembled nanostructured films at arbitrary angles of incidence: from grazing incidence (above the critical angle) to transmission perpendicular to the substrate. J Phys Chem B 110(20):9882–9892. https://doi.org/10.1021/jp0566008

    Article  CAS  Google Scholar 

  40. Zhang S, Zhao X, Wang P, Xiao P, Luo J, Jiang B (2019) Preparation of superhydrophilic silicate coating by sol-gel for double-wavelength broadband antireflective coatings. J Sol-Gel Sci Technol 92(3):598–606. https://doi.org/10.1007/s10971-019-05130-z

    Article  CAS  Google Scholar 

  41. Gbashi KR (2020) Investigation of morphological, optical and structural properties of multi-layer coatings for solar energy. Appl Phys A-Mater Sci Processing 126(4). https://doi.org/10.1007/s00339-020-3419-6

  42. Parratt LG (1954) Surface studies of solids by total reflection X-rays. Phys Rev 95(2):359–369. https://doi.org/10.1103/PhysRev.95.359

    Article  Google Scholar 

  43. Wang Y, Watkins E, Ilavsky J, Metroke TL, Wang P, Lee B, Schaefer DW (2007) Water-barrier properties of mixed bis trimethoxysilylpropyl amine and vinyltriacetoxysilane films. J Phys Chem B 111(25):7041–7051. https://doi.org/10.1021/jp0679212

    Article  CAS  Google Scholar 

  44. Park J, Sharma J, Goswami M, Voylov D, Jang GG, Lassiter MG, Marquez-Rossy A, Polizos G (2020) Solution-derived monolithic thin films with low adhesion surface. Sol Energy Mater Sol Cells 206:6. https://doi.org/10.1016/j.solmat.2019.110302

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Foundation of Liaoning Educational Committee (Grant no. 2019LNJC17 and 2017LNQN03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbao Jia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Jia, H., Qu, J. et al. Sol-gel synthesis of TiO2-SiO2 hybrid films with tunable refractive index for broadband antireflective coatings covering the visible range. J Sol-Gel Sci Technol 107, 105–121 (2023). https://doi.org/10.1007/s10971-021-05719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05719-3

Keywords

Navigation