Skip to main content
Log in

Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This study investigates how rare earth ion (RE3+) concentration affects stabilization of the crystalline structure and infrared-to-visible upconversion (UC) in Er3+/Yb3+ co-doped yttrium tantalates, synthesized by the sol–gel method. Under 980 nm, the samples exhibited intense UC luminescence. The crystalline phases strongly influenced the emission color of UC luminescence. The sample consisting of pure Y3TaO7 phase had a yellowish-green color, but a greener emission appeared in the presence of a small amount of M’-YTaO4. Increasing the RE3+ concentration influences the Y3TaO7 crystalline phase stabilization, as well as in the color tunability, since cross-relaxation processes take place, enhancing red emission intensity. This is the first report of UC quantum yield (UCQY) for yttrium tantalate samples (up to 0.016 ± 0.002%). Samples doped with Er3+/Yb3+ 0.5/1.5 mol % annealed at 900 or 1100 °C were successfully developed as primary thermometers. The temperature of these materials can be predicted without any calibration through the Boltzmann law, using the ratio of the intensity of transitions of Er3+. The maximum relative thermal sensitivity was 1.31 ± 0.05% K−1, which was higher than the sensitivity reported for other oxides. Nanothermometer repeatability was 98.8% and 99.8%, with minimum temperature uncertainty of 0.93 and 0.87 K for samples annealed at 900 and 1100 °C, respectively. The great tunability properties, UCQY values, and nanothermometry results indicated that primary thermometers can be implemented by using Er3+/Yb3+ co-doped yttrium tantalate upconverting nanoparticles for biophotonic applications in temperature sensing and deep tissue imaging.

Highlights

  • Y3TaO7:Er3+/Yb3+ materials were synthetized via the sol–gel method.

  • Upconversion was studied as a function of the doping concentration.

  • The maximum UC quantum yield was 0.016 ± 0.002%.

  • The samples could be successfully applied as primary thermometers.

  • The maximum relative sensitivity was 1.31% K−1; the temperature uncertainty was 0.87 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article (as well as in its Supplementary Information files).

References

  1. Hemmer E, Benayas A, Légaré F, Vetrone F (2016) Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons 1:168–184. https://doi.org/10.1039/c5nh00073d

    Article  CAS  Google Scholar 

  2. Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S (2017) Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 5:4365–4392. https://doi.org/10.1039/c7tb00403f

    Article  CAS  Google Scholar 

  3. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128. https://doi.org/10.1038/nm0103-123

    Article  CAS  Google Scholar 

  4. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1. https://doi.org/10.1038/s41551-016-0010

  5. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4:710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  Google Scholar 

  6. Auzel F (2004) Upconversion and anti-stokes processes with f and d Ions in solids. Chem Rev 104:139–174. https://doi.org/10.1021/cr020357g

    Article  CAS  Google Scholar 

  7. Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24:812–827. https://doi.org/10.1021/cm2028367

  8. Liu H, Xu CT, Lindgren D et al. (2013) Balancing power density based quantum yield characterization of upconverting nanoparticles for arbitrary excitation intensities. Nanoscale 5:4770–4775. https://doi.org/10.1039/c3nr00469d

    Article  CAS  Google Scholar 

  9. Xu CT, Svenmarker P, Liu H et al. (2012) High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles. ACS nano 6:4788–4795. https://doi.org/10.1021/nn3015807

  10. Hodak J, Chen Z, Wu S, Etchenique R (2015) Multiphoton excitation of upconverting nanoparticles in pulsed regime. Anal Chem 88:1468–1475. https://doi.org/10.1021/acs.analchem.5b04485

  11. Sorbello C, Etchenique R (2018) Intrinsic optical sectioning with upconverting nanoparticles. Chem Commun 54:1861–1864. https://doi.org/10.1039/c7cc08443a

    Article  CAS  Google Scholar 

  12. Fischer LH, Harms GS, Wolfbeis OS (2011) Upconverting nanoparticles for nanoscale thermometry. Angew. Chemie Int. Ed 50:4546–4551. https://doi.org/10.1002/anie.201006835

  13. Brites CDS, Lima PP, Silva NJO et al. (2012) Thermometry at the nanoscale. Nanoscale 4:4799–4829. https://doi.org/10.1039/C2NR30663H

  14. Brites CDS, Millán A, Carlos LD (2016) Lanthanides in luminescent thermometry. Handb Phys Chem Rare Earths 49:339–427. https://doi.org/10.1016/bs.hpcre.2016.03.005

    Article  CAS  Google Scholar 

  15. Rai VK (2007) Temperature sensors and optical sensors. Appl Phys B Lasers Opt 88:297–303. https://doi.org/10.1007/s00340-007-2717-4

    Article  CAS  Google Scholar 

  16. Jaque D, Vetrone F (2012) Luminescence nanothermometry. Nanoscale 4:4301–4326. https://doi.org/10.1039/C2NR30764B

  17. Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869. https://doi.org/10.1039/c3cs60102a

    Article  CAS  Google Scholar 

  18. Vetrone F, Naccache R, Zamarró A et al. (2010) Temperature sensing using fluorescent nanothermometers. ACS nano 4:3254–3258. https://doi.org/10.1021/nn100244a

  19. Zhou H, Sharma M, Berezin O et al. (2016) Nanothermometry: from microscopy to thermal treatments. ChemPhysChem 17:27–36

    Article  Google Scholar 

  20. Qiu X, Zhou Q, Zhu X et al. (2020) Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat Commun 11:1–9. https://doi.org/10.1038/s41467-019-13796-w

    Article  CAS  Google Scholar 

  21. Wang X, Liu Q, Bu Y et al. (2015) Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv 5:86219–86236

    Article  CAS  Google Scholar 

  22. Brites CDS, Balabhadra S, Carlos LD (2019) Lanthanide‐based thermometers: at the cutting‐edge of luminescence thermometry. Adv Opt Mater 7:1801239. https://doi.org/10.1002/adom.201801239

    Article  CAS  Google Scholar 

  23. Rocha J, Rocha J, Brites CDS, Carlos LD (2016) Lanthanide organic framework luminescent thermometers liquid water anomalies view project luminescent thermometry using Ln3+ doped organic-inorganic hybrid materials view project & metal-organic frameworks lanthanide organic framework luminescent thermometers. Chem Eur J 22:1–15. https://doi.org/10.1002/chem.201600860

    Article  CAS  Google Scholar 

  24. Quintanilla M, Benayas A, Naccache R, Vetrone F (2016) Luminescent nanothermometry with lanthanide-doped nanoparticles. In: Carlos LD, Palacio F (eds) Thermometry at the nanoscale: techniques and selected applications. Royal Society Of Chemistry, Cambridge, UK, pp 124–166

  25. Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869. https://doi.org/10.1039/c3cs60102a

    Article  CAS  Google Scholar 

  26. Balabhadra S, Debasu ML, Brites CDS et al. (2017) Upconverting nanoparticles working as primary thermometers in different media. J Phys Chem C 121:13962–13968. https://doi.org/10.1021/acs.jpcc.7b04827

    Article  CAS  Google Scholar 

  27. Martínez ED, Brites CDS, Carlos LD et al. (2019) Electrochromic switch devices mixing small- and large-sized upconverting nanocrystals. Adv Funct Mater 29:1807758. https://doi.org/10.1002/adfm.201807758

    Article  CAS  Google Scholar 

  28. Martins JC, Bastos ARN, Ferreira RAS et al. (2021) Primary luminescent nanothermometers for temperature measurements reliability assessment. Adv Photonics Res. 2000169. https://doi.org/10.1002/adpr.202000169

  29. Martínez ED, Brites CDS, Carlos LD et al. (2019) Upconversion nanocomposite materials with designed thermal response for optoelectronic devices. Front Chem 7. https://doi.org/10.3389/fchem.2019.00083

  30. Shinn MD, Sibley WA, Drexhage MG, Brown RN (1983) Optical transitions of Er3+ ions in fluorozirconate glass. Phys Rev B 27:6635–6648. https://doi.org/10.1103/PhysRevB.27.6635

    Article  CAS  Google Scholar 

  31. Zhou S, Deng K, Wei X et al. (2013) Upconversion luminescence of NaYF4: Yb3+, Er3+ for temperature sensing. Opt Commun 291:138–142. https://doi.org/10.1016/j.optcom.2012.11.005

    Article  CAS  Google Scholar 

  32. Wu K, Cui J, Kong X, Wang Y (2011) Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals articles you may be interested in. J Appl Phys 110:53510. https://doi.org/10.1063/1.3631822

    Article  CAS  Google Scholar 

  33. Du P, Luo L, Yue Q, Li W (2015) The simultaneous realization of high- and low-temperature thermometry in Er3+/Yb3+-codoped Y2O3 nanoparticles. Mater Lett 143:209–211. https://doi.org/10.1016/j.matlet.2014.12.123

    Article  CAS  Google Scholar 

  34. Singh SK, Kumar K, Rai SB (2009) Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry. Sensors Actuators. A Phys 149:16–20. https://doi.org/10.1016/j.sna.2008.09.019

    Article  CAS  Google Scholar 

  35. Brandão-Silva AC, Gomes MA, Novais SMV et al. (2018) Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs. J Alloys Compd 731:478–488. https://doi.org/10.1016/j.jallcom.2017.09.156

    Article  CAS  Google Scholar 

  36. Liu L, Wang Y, Zhang X et al. (2011) Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals. Opt Commun 284:1876–1879. https://doi.org/10.1016/j.optcom.2010.12.030

    Article  CAS  Google Scholar 

  37. Alencar MARC, Maciel GS, De Araújo CB, Patra A (2004) Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor. Appl Phys Lett 84:4753–4755. https://doi.org/10.1063/1.1760882

    Article  CAS  Google Scholar 

  38. Sinha S, Mahata MK, Kumar K et al. (2017) Dualistic temperature sensing in Er3+/Yb3+ doped CaMoO4 upconversion phosphor. Spectrochim Acta Part A Mol Biomol Spectrosc 173:369–375. https://doi.org/10.1016/j.saa.2016.09.039

    Article  CAS  Google Scholar 

  39. Huang F, Gao Y, Zhou J et al. (2015) Yb3+/Er3+ co-doped CaMoO4: a promising green upconversion phosphor for optical temperature sensing. J Alloys Compd 639:325–329. https://doi.org/10.1016/j.jallcom.2015.02.228

    Article  CAS  Google Scholar 

  40. Xu W, Gao X, Zheng L et al. (2012) Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphor. Appl Phys Express 5:072201. https://doi.org/10.1143/APEX.5.072201

    Article  CAS  Google Scholar 

  41. Pandey A, Rai VK, Kumar V et al. (2015) Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: an optical heating phosphor. Sensors Actuators B Chem 209:352–358. https://doi.org/10.1016/j.snb.2014.11.126

    Article  CAS  Google Scholar 

  42. Mahata MK, Kumar K, Rai VK (2015) Er3+–Yb3+ doped vanadate nanocrystals: a highly sensitive thermographic phosphor and its optical nanoheater behavior. Sensors Actuators B Chem 209:775–780. https://doi.org/10.1016/j.snb.2014.12.039

    Article  CAS  Google Scholar 

  43. Singh AK, Singh SK, Gupta BK et al. (2013) Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors. Dalt Trans 42:1065–1072. https://doi.org/10.1039/c2dt32054a

    Article  CAS  Google Scholar 

  44. Wang X, Li X, Cheng L et al. (2017) Concentration-dependent spectroscopic properties and temperature sensing of YNbO4:Er3+ phosphors. RSC Adv 7:23751–23758. https://doi.org/10.1039/c7ra02721d

    Article  CAS  Google Scholar 

  45. Tian Y, Tian Y, Huang P et al. (2016) Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem Eng J 297:26–34. https://doi.org/10.1016/j.cej.2016.03.149

    Article  CAS  Google Scholar 

  46. Righini GC, Ferrari M (2005) Photoluminescence of rare-earth-doped glasses. Riv del Nuovo Cim 28:1–53. https://doi.org/10.1393/ncr/i2006-10010-8

    Article  CAS  Google Scholar 

  47. Hehlen MP, Cockroft NJ, Gosnell T, Bruce AJ (1997) Spectroscopic properties of- and-doped soda-lime silicate and aluminosilicate glasses. Phys Rev B Condens Matter Mater Phys 56:9302–9318. https://doi.org/10.1103/PhysRevB.56.9302

    Article  CAS  Google Scholar 

  48. Wu H, Hao Z, Zhang L et al. (2018) Phonon Energy Dependent Energy Transfer Upconversion for the Red Emission in the Er3+/Yb3+ System. J Phys Chem C 122:9611–9618. https://doi.org/10.1021/acs.jpcc.8b02446

  49. Punjabi A, Wu X, Tokatli-Apollon A et al. (2014) Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS nano 8:10621–10630. https://doi.org/10.1021/nn505051d

  50. León-Luis SF, Rodríguez-Mendoza UR, Haro-González P et al. (2012) Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sensors Actuators B Chem 174:176–186. https://doi.org/10.1016/j.snb.2012.08.019

  51. Boyer JC, Van Veggel FCJM (2010) Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2:1417–1419. https://doi.org/10.1039/c0nr00253d

    Article  CAS  Google Scholar 

  52. Huang P, Zheng W, Zhou S et al. (2014) Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew Chemie Int Ed 53:1252–1257. https://doi.org/10.1002/anie.201309503

    Article  CAS  Google Scholar 

  53. Liao J, Kong L, Wang M et al. (2019) Tunable upconversion luminescence and optical temperature sensing based on non-thermal coupled levels of Lu3NbO7:Yb3+/Ho3+ phosphors. Opt Mater 98. https://doi.org/10.1016/j.optmat.2019.109452

  54. Liu J, Deng H, Huang Z et al. (2015) Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd2O3:Yb3+/Er3+ nanoparticles under near-infrared excitation. Phys Chem Chem Phys 17:15412–15418. https://doi.org/10.1039/c5cp01632k

    Article  CAS  Google Scholar 

  55. Linda Francis T, Prabhakar Rao P, Mahesh SK et al. (2016) Effect of host structure on the photoluminescence properties of Ln3TaO7:Eu3+ red phosphors. Opt Mater 52:134–143. https://doi.org/10.1016/j.optmat.2015.12.028

    Article  CAS  Google Scholar 

  56. Wakeshima M, Nishimine H, Hinatsu Y (2004) Crystal structures and magnetic properties of rare earth tantalates RE3TaO7 (Re = rare earths). J Phys Condens Matter 16:4103–4120. https://doi.org/10.1088/0953-8984/16/23/025

    Article  CAS  Google Scholar 

  57. Doi Y, Harada Y, Hinatsu Y (2009) Crystal structures and magnetic properties of fluorite-related oxides Ln3NbO7 (Ln=lanthanides). J Solid State Chem 182:709–715. https://doi.org/10.1016/j.jssc.2008.12.012

    Article  CAS  Google Scholar 

  58. Borges FH, Caixeta FJ, Pereira RR et al. (2018) Yttrium tantalate containing high concentrations of Eu3+ as dopant: synthesis and structural and luminescence features. J Lumin 199:143–153. https://doi.org/10.1016/j.jlumin.2018.03.017

    Article  CAS  Google Scholar 

  59. Borges FH, Caixeta FJ, Pereira RR et al. (2020) High Eu3+ concentration quenching in Y3TaO7 solid solution for orange-reddish emission in photonics. RSC Adv 10:16917–16927. https://doi.org/10.1039/D0RA01912G

    Article  CAS  Google Scholar 

  60. Gonçalves RR, Carturan G, Zampedri L et al. (2003) Infrared-to-visible CW frequency upconversion in erbium activated silica-hafnia waveguides prepared by sol-gel route. J NonCryst Solids. 322:306–310. https://doi.org/10.1016/S0022-3093(03)00220-5

  61. Aquino FT, Ferrari JL, Maia LJQ et al. (2016) Near infrared emission and multicolor tunability of enhanced upconversion emission from Er3+-Yb3+ co-doped Nb2O5 nanocrystals embedded in silica-based nanocomposite and planar waveguides for photonics. J Lumin 170:431–443. https://doi.org/10.1016/j.jlumin.2015.08.077

    Article  CAS  Google Scholar 

  62. Ferrari JL, De Oliveira Lima K, Pecoraro E et al. (2012) Color tunability of intense upconversion emission from Er3+-Yb3+ co-doped SiO2-Ta2O5 glass ceramic planar waveguides. J Mater Chem 22:9901–9908. https://doi.org/10.1039/c2jm30456b

    Article  CAS  Google Scholar 

  63. Mooney J, Kambhampati P (2013) Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra. J Phys Chem Lett 4:3316–3318. https://doi.org/10.1021/jz401508t

  64. Yashima M, Tsuji T (2007) Crystal structure, disorder, and diffusion path of oxygen ion conductors Y1-xTaxO1.5+x (x = 0.215 and 0.30). Chem Mater 19:3539–3544. https://doi.org/10.1021/cm070910g

    Article  CAS  Google Scholar 

  65. King G, Thompson CM, Greedan JE, Llobet A (2013) Local structure of the vacancy disordered fluorite Yb3TaO7 from neutron total scattering. J Mater Chem A 1:10487–10494. https://doi.org/10.1039/c3ta12100c

    Article  CAS  Google Scholar 

  66. Walasek A, Zych E, Liqiong A et al. (2007) Spectroscopic properties of Y3TaO7 powders activated with Eu, Er and co-activated with Yb. J Phys: Conf Ser 79:012043

  67. Yokogawa Y, Yoshimura M, Somiya S (1988) Order-disorder in R3TaO7 (R=rare earth) phases. Solid State Ionics 28–30:1250–1253. https://doi.org/10.1016/0167-2738(88)90365-7

    Article  Google Scholar 

  68. Wakeshima M, Hinatsu Y (2010) Magnetic properties and structural transitions of orthorhombic fluorite-related compounds Ln3MO7 (Ln=rare earths, M=transition metals). J Solid State Chem 183:2681–2688. https://doi.org/10.1016/j.jssc.2010.09.005

    Article  CAS  Google Scholar 

  69. Brixner LH, Chen H (1983) On the structural and luminescent properties of the M’-LnTaO4 rare earth tantalates. J Electrochem Soc 130:2435–2443. https://doi.org/10.1149/1.2119609

  70. Issler SL, Torardi CC (1995) Solid state chemistry and luminescence of X-ray phosphors. J Alloys Compd 229:54–65. https://doi.org/10.1016/0925-8388(95)01686-4

    Article  CAS  Google Scholar 

  71. Li B, Gu Z, Dong Y et al. (1999) The luminescence properties of M’ type of YTaO4:Eu. Chem Res Chinese Univ 15:226–231

    CAS  Google Scholar 

  72. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Cryst 32:751–767. https://doi.org/10.1107/S0567739476001551

  73. Molchanov VV, Zuev MG, Plyasova LM, Bogdanov SV (2004) Mechanochemical synthesis of yttrium and lanthanum tantalates. Inorg Mater 40:73–79. https://doi.org/10.1023/B:INMA.0000012182.99092.6b

    Article  CAS  Google Scholar 

  74. Walasek A, Zych E, Zhang J, Wang S (2007) Synthesis, morphology and spectroscopy of cubic Y3NbO7:Er. J Lumin 127:523–530. https://doi.org/10.1016/j.jlumin.2007.02.063

    Article  CAS  Google Scholar 

  75. Walasek A, Zhang J, Wang S, Zych E (2007) Synthesis and up-converted luminescence of Y3NbO7:Er. Opt Mater (Amst) 30:188–191. https://doi.org/10.1016/j.optmat.2006.11.024

    Article  CAS  Google Scholar 

  76. Wells JPR, Han TPJ, Yamaga M et al. (2000) Disordered laser gain media: Er3+ doped CaGdAlO4 and Ca3Ga2Ge4O14. J Lumin 87:1093–1095. https://doi.org/10.1016/S0022-2313(99)00552-9

    Article  Google Scholar 

  77. Pang T, Cao Whe, Fu Y, Luo Xxian (2008) Up-conversion luminescence of trivalent-rare-earth ion-doped LnTaO4 (Ln = Y, Gd, La). Mater Lett 62:2500–2502. https://doi.org/10.1016/j.matlet.2007.12.031

    Article  CAS  Google Scholar 

  78. Siqueira KPF, Carmo AP, Bell MJV, Dias A (2016) Optical properties of undoped NdTaO4, ErTaO4 and YbTaO4 ceramics. J Lumin 179:146–153. https://doi.org/10.1016/j.jlumin.2016.06.054

    Article  CAS  Google Scholar 

  79. Wei W, Zhang Y, Chen R et al. (2014) Cross relaxation induced pure red upconversion in activator-and sensitizer-rich lanthanide nanoparticles. Chem Mater 26:5183–5186. https://doi.org/10.1021/cm5022382

    Article  CAS  Google Scholar 

  80. Liu S, Cui J, Jia J et al. (2019) High sensitive Ln3+/Tm3+/Yb3+ (Ln3+ = Ho3+, Er3+) tri-doped Ba3Y4O9 upconverting optical thermometric materials based on diverse thermal response from non-thermally coupled energy levels. Ceram Int 45:1–10. https://doi.org/10.1016/j.ceramint.2018.09.162

  81. Pollnau M, Gamelin DR, Lü SR et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys Rev B 61:3337–3346. https://doi.org/10.1103/PhysRevB.61.3337

  82. Wu Y-F, Nien Y-T, Wang Y-J, Chen I-G (2012) Enhancement of photoluminescence and color purity of CaTiO3:Eu phosphor by Li doping. J Am Ceram Soc 95:1360–1366. https://doi.org/10.1111/j.1551-2916.2011.04967.x

    Article  CAS  Google Scholar 

  83. Sreena TS, Rao PP, Raj AKV, Thara TRA (2018) Narrow-band red-emitting phosphor, Gd3Zn2Nb3O14:Eu3+ with high color purity for phosphor-converted white light emitting diodes. J Alloys Compd 751:148–158. https://doi.org/10.1016/j.jallcom.2018.04.135

    Article  CAS  Google Scholar 

  84. Chee Tan M, Connolly J, Riman RE (2011) Optical efficiency of short wave infrared emitting phosphors. J Phys Chem C 115:17952–17957. https://doi.org/10.1021/jp203735n

    Article  CAS  Google Scholar 

  85. Balabhadra S, Debasu ML, Brites CDS et al. (2017) A cost-effective quantum yield measurement setup for upconverting nanoparticles. J Lumin 189:64–70. https://doi.org/10.1016/j.jlumin.2017.03.054

    Article  CAS  Google Scholar 

  86. Pokhrel M, Kumar GA, Sardar DK (2013) Highly efficient NIR to NIR and VIS upconversion in Er3+ and Yb3+ doped in M2O2S (M = Gd, La, Y). J Mater Chem A 1:11595–11606. https://doi.org/10.1039/c3ta12205k

    Article  CAS  Google Scholar 

  87. Gargas DJ, Chan EM, Ostrowski AD et al. (2014) Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat Nanotechnol 9:300–305 https://doi.org/10.1038/NNANO.2014.29

  88. Wilhelm S (2017) Perspectives for upconverting nanoparticles. ACS Nano 11:5. https://doi.org/10.1021/acsnano.7b07120

    Article  CAS  Google Scholar 

  89. Xu CT, Zhan Q, Liu H et al. (2013) Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: current trends and future challenges. Laser Photon Rev 7:663–697. https://doi.org/10.1002/lpor.201200052

    Article  CAS  Google Scholar 

  90. Würth C, Kaiser M, Wilhelm S et al. (2017) Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 9:4283–4294. https://doi.org/10.1039/c7nr00092h

    Article  Google Scholar 

  91. Wong KL, Bünzli JCG, Tanner PA (2020) Quantum yield and brightness. J Lumin 224:11725. https://doi.org/10.1016/j.jlumin.2020.117256

  92. Caixeta FJ, Bastos ARN, Botas AMP et al. (2020) High-quantum yield upconverting Er3+/Yb3+ organic-inorganic hybrid dual coatings for real-time temperature sensing and photothermal conversion. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.0c03874

  93. Debasu ML, Riedl JC, Rocha J, Carlos LD (2018) The role of Li+ in the upconversion emission enhancement of (YYbEr)2O3 nanoparticles. Nanoscale 10:15799–15808. https://doi.org/10.1039/c8nr03608j

    Article  CAS  Google Scholar 

  94. Dong B, Cao B, He Y et al. (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv Mater 24:1987–1993. https://doi.org/10.1002/adma.201200431

    Article  CAS  Google Scholar 

  95. Quintanilla M, Cantelar E, Cussó F et al. (2011) Temperature sensing with up-converting submicron-sized LiNbO3:Er3+/Yb3+ particles. Appl Phys Express 4:022601. https://doi.org/10.1143/APEX.4.022601

    Article  CAS  Google Scholar 

  96. Zhang Y, Cao Y, Zhao Y et al. (2021) Optical temperature sensor based on upconversion luminescence of Er3+ doped GdTaO4 phosphors. J Am Ceram Soc 104:361–368. https://doi.org/10.1111/jace.17480

    Article  CAS  Google Scholar 

  97. Liu G, Fu L, Gao Z et al. (2015) Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3, YAG and LaAlO3 phosphors. RSC Adv 5:51820–51827. https://doi.org/10.1039/C5RA05986K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs. Cynthia Maria de Campos Prado Manso for reviewing the text and Lucas Rafael Nunes for taking the photos of the samples under 980 nm excitation, presented in Fig. 2. C. Brites from the University of Aveiro is acknowledged for helping in the quantum yield measurements. The authors would like to thank the Department of Chemistry (FFCLRP), University of São Paulo, and the University of Aveiro at Aveiro, Portugal, for the opportunity of using its facilities.

Author contributions

All authors have contributed to writing of this manuscript and have approved this final version. FHB and RRP have synthesized Er3+/Yb3+ co-doped yttrium tantalates samples. FHB and JCM, performed the optical characterization measurements of the thermometric properties of these samples. FJC helped in the investigation and the writing. LDC, RASF, and RRG supervised the work, as well as reviewed and editing.

Funding

The authors want to acknowledge the Brazilian funding agencies Fapesp (grant number 2017/11301-2 and scholarship processes numbers 2017/10424-3 and 2018/04587-0), CNPq, and CAPES for financial support. This work was also developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 and UIDP/50011/2020, financed by national funds through the FCT/MEC and, when appropriate, co-financed by FEDER under the PT2020 Partnership Agreement. JCM also acknowledges FCT for the grant SFRH/BD/139710/2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rute A. S. Ferreira or Rogéria Rocha Gonçalves.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, F.H., Martins, J.C., Caixeta, F.J. et al. Primary thermometers based on sol–gel upconverting Er3+/Yb3+ co-doped yttrium tantalates with high upconversion quantum yield and emission color tunability. J Sol-Gel Sci Technol 102, 249–263 (2022). https://doi.org/10.1007/s10971-021-05673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05673-0

Keywords

Navigation