Skip to main content

Advertisement

Log in

Double perovskite nanostructured Dy2CoMnO6 an efficient visible-light photocatalysts: synthesis and characterization

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The double perovskite oxide Dy2CoMnO6 (DCMO) has been synthesized by the sol‒gel citrate method in the form of nanoparticles with an average particle size of 110 ± 5 nm as obtained from TEM measurement. The Rietveld refinement of the X-ray diffraction (XRD) pattern suggests monoclinic P21/n crystal structure. The band gap of the material of 1.93 eV is obtained from the UV–vis diffuse reflectance spectrum. The X-ray photoemission spectroscopic study reveals the multiple oxidation states of Co and Mn in DCMO. The photocatalytic behavior of DCMO is evaluated by the photodegradation of rhodamine-B (Rh-B) under the visible light irradiation. The results indicate that DCMO nanoparticles exhibit remarkable photocatalytic efficiency by degrading the Rh-B almost 98% in 4 h. The Mott–Schottky experiment suggests the p-type semiconducting nature of DCMO. We have also schematically represented the possible photocatalytic reaction with the band edge positions of DCMO with respect to the reactive oxygen species formation potential. The electrical properties and the charge carrier dynamics of the material are investigated using the alternating current impedance spectroscopy in a wide range of temperature and frequency. The activation energy of 0.31 eV obtained from the temperature dependence Dc conductivity suggests the p-type polaronic conduction in DCMO.

Highlights

  • The phase pure Dy2CoMnO6 nanostructured material is successfully synthesized by the sol–gel process.

  • The Rh-B degradation efficiency of the material reaches 98% in 4 h under visible light.

  • XPS study reveals multiple oxidation state of Co and Mn in DCMO.

  • Mott–Schottky experiment suggests the p-type semiconducting nature of DCMO.

  • Study of electrical properties also reveals p-type polaronic conduction in DCMO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu C, Anusuyadevi PR, Aymonier C, Luque R, Marre S (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868

    Article  CAS  Google Scholar 

  2. Tanwar R, Kumar S, Mandal UK (2017) Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye. J Photochem Photobiol A: Chem 333:105

    Article  CAS  Google Scholar 

  3. Wang Q, Gao Q, Al-Enizi AM, Nafady A, Ma S (2020) Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg Chem Front 7:300

    Article  CAS  Google Scholar 

  4. Kowalska E, Janczarek M, Markowska-Szczupak A (2019) Nanomaterials for environmental purification and energy conversion. Catalysis 9:855

    CAS  Google Scholar 

  5. Liu H, Zhang ZG, Wang XX, Di Nie G, Zhang J, Zhang SX, Cao N, Yan SY, Ze Y (2018) Long, highly flexible Fe2O3/TiO2 composite nanofibers for photocatalysis and ultraviolet detection. J Phys Chem Solids 121:236

    Article  CAS  Google Scholar 

  6. Li M, Hong Z, Fang Y (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater Res Bull 43:2179

    Article  CAS  Google Scholar 

  7. Weng B, Qi M-Y, Han C, Tang Z-R, Xu Y-J (2019) Photocorrosion inhibition of semiconductor-based photocatalysts: basic principle, current development, and future perspective. ACS Catal 9:4642

    Article  CAS  Google Scholar 

  8. Hernández-Alonso MD, Fresno F, Suáreza S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231

    Article  CAS  Google Scholar 

  9. Yu X, Fan X, An L, Li Z, Liu J (2018) Facile synthesis of superstructure Ti3+-TiO2 mesocrystals for efficient visible-light photocatalysis. J Phys Chem Solids 119:94

    Article  CAS  Google Scholar 

  10. Zhou F, Zhang Z, Jiang Y, Yu G, Wang Q, Liu W (2020) One-step in situ preparation of flexible CuS/TiO2/polyvinylidene fluoride fibers with controlled surface morphology for visible light-driven photocatalysis. J Phys Chem Solids 144:109512

    Article  CAS  Google Scholar 

  11. Skiker R, Zouraibi M, Saidi M, Ziat K (2018) Facile coprecipitation synthesis of novel Bi12TiO20/BiFeO3 heterostructure series with enhanced photocatalytic activity for removal of methyl orange from water. J Phys Chem Solids 119:265

    Article  CAS  Google Scholar 

  12. Vijayaraghavan T, Bradha M, Babu P, Parida KM, Ramadoss G, Vadivel S, Selvakumar R, Ashok A (2020) Influence of secondary oxide phases in enhancing the photocatalytic properties of alkaline earth elements doped LaFeO3 nanocomposites. J Phys Chem Solids 140:109377

    Article  CAS  Google Scholar 

  13. Ibarra-Rodriguez LI, Huerta-Flores AM, Mora-Hernandez JM, Torres-Martínez LM (2020) Photocatalytic evolution of H2 over visible-light active LaMO3 (M: Co, Mn, Fe) perovskite materials: Roles of oxygenated species in catalytic performance. J Phys Chem Solids 136:109189

    Article  CAS  Google Scholar 

  14. Zhang N, Chen D, Niu F, Wang S, Qin L, Huang Y (2016) Enhanced visible light photocatalytic activity of Gd-doped BiFeO3 nanoparticles and mechanism insight. Sci Rept 6:26467

    Article  CAS  Google Scholar 

  15. Sudrajata H, Thushari I, Babel S (2019) Chemical state and coordination structure of La cations doped in KTaO3 photocatalysts. J Phys Chem Solids 127:94

    Article  CAS  Google Scholar 

  16. Ye Y, Yang H, Li R, Wang X (2020) Enhanced photocatalytic performance and mechanism of Ag-decorated LaFeO3 nanoparticles. J Sol-Gel Sci Tech 82:509

    Article  CAS  Google Scholar 

  17. Shen H, Feng P, Jiang G, Xian Q (2020) Synthesis of Mn-doped ErFeO3 with enhanced photo and vibration catalytic activities. J Sol-Gel Sci Tech 95:230

    Article  CAS  Google Scholar 

  18. Jana R, Gupta A, Choudhary R, Pandey OP (2020) Influence of cationic doping at different sites in NaNbO3 on the photocatalytic degradation of methylene blue dye. J Sol-Gel Sci Tech 96:405

    Article  CAS  Google Scholar 

  19. Rabbani M, Rahimi R, Ghadi HF (2018) Photocatalytic application of BiFeO3 synthesized via a facile microwave-assisted solution combustion method. J Sol-Gel Sci Tech 87:340

    Article  CAS  Google Scholar 

  20. Zhou J, Jiang L, Chen D, Liang J, Qin L, Bai L, Sun X, Huang Y (2019) Facile synthesis of Er-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic degradation of tetracycline hydrochloride. J Sol-Gel Sci Tech 90:535

    Article  CAS  Google Scholar 

  21. Qi L, Li X (2014) N-doped NaTaO3: novel visible-light-driven photocatalysts synthesised by a sol–gel method. J Sol-Gel Sci Tech 69:625

    Article  CAS  Google Scholar 

  22. Li Q, Wang S, Yuan Y, Gao H, Xiang X (2017) Phase-controlled synthesis, surface morphology, and photocatalytic activity of the perovskite AlFeO3. J Sol-Gel Sci Tech 82:500

    Article  CAS  Google Scholar 

  23. Singh SJ, Jayaram RV (2009) Oxidation of alkylaromatics to benzylic ketones using TBHP as an oxidant over LaMO3 (M = Cr, Co, Fe, Mn, Ni) perovskites. Catal Commun 10:2004

    Article  CAS  Google Scholar 

  24. Rogado NS, Li J, Sleight AW, Subramanian MA (2005) Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv Mater 17:2225

    Article  CAS  Google Scholar 

  25. Zhu M, Lin Y, Lo EWC, Wang Q, Zhao Z, Xie W (2012) Electronic and magnetic properties of La2NiMnO6 and La2CoMnO6 with cationic ordering. Appl Phys Lett 100:062406

    Article  CAS  Google Scholar 

  26. Singh DJ, Park CH (2008) Polar behavior in a magnetic perovskite from -site size disorder: a density functional study. Phys Rev Lett 100:087601

    Article  CAS  Google Scholar 

  27. Fedorchenko AV, Fertman EL, Salak AN, Desnenko VA, Čižmár E, Feher A, Vaisburd AI, Olekhnovich NM, Pushkarev AV, Radyush YV, Zarkov A, Kareiva A (2018) Unusual magnetic properties of the polar orthorhombic BiFe0.5Sc0.5O3 perovskite. J Magn Magn Mater 465:328

    Article  CAS  Google Scholar 

  28. Alff L (2007) Ferrimagnetic double perovskites as spintronic materials. Elec Corr New Mat Nano 241:393

    CAS  Google Scholar 

  29. Mohassel R, Sobhani A, Niasari MS, Goudarzi M (2018) Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc 204:232

    Article  CAS  Google Scholar 

  30. Valian M, Beshkar F, Niasari MS (2017) Urchin-like Dy2CoMnO6 double perovskite nanostructures: new simple fabrication and investigation of their photocatalytic properties. J Mater Sci: Mater Electron 28:12440

    CAS  Google Scholar 

  31. Mohassel R, Amirib M, Abbas AK, Sobhani A, Ashrafi M, Moayedi H, Niasari MS (2020) Pechini synthesis using propylene glycol and various acid as stabilizing agents and characterization of Gd2NiMnO6 ceramic nanostructures with good photocatalytic properties for removal of organic dyes in water. J Mater Res Tech 9:1720

    Article  CAS  Google Scholar 

  32. Baladi M, Soofivand F, Valian M, Niasari MS (2019) Sonochemical-assisted synthesis of pure Dy2ZnMnO6 nanoparticles as a novel double perovskite and study of photocatalytic performance for wastewater treatment. Ultrason Sonochem 57:172

    Article  CAS  Google Scholar 

  33. Asai K, Fujiyoshi K, Nishimori N, Satoh Y, Kobayashi Y, Mizoguchi M (1998) Magnetic properties of REMe0.5Mn0.5O3 (RE = Rare Earth Element, Me = Ni, Co). J Phys Soc Jpn 67:4218

    Article  CAS  Google Scholar 

  34. Filho PLC, Barrozo P, Landinez-Tellez DA, Jardim RF, Azevedo WM, Albino Aguiar J (2013) Structural and magnetic properties of Ln2CoMnO6 (Ln=Dy and La) produced by combustion synthesis. J Supercond Nov Magn 26:2521

    Article  CAS  Google Scholar 

  35. Dutta A, Singh SK, Murthy VRK, Mukhopadhyay PK, Sinha TP (2018) Crystal structure, Raman spectroscopy and microwave dielectric properties of xBa3MgNb2O9–(1-x)Ba2InNbO6 [x=0.4, 0.6, 0.8]. Mater Res Bull 100:178

    Article  CAS  Google Scholar 

  36. Sheikh MS, Sakhya AP, Maity R, Dutta A, Sinha TP (2019) Narrow band gap and optical anisotropy in double perovskite oxide Sm2NiMnO6: a new promising solar cell absorber. Sol Ener Mater Sol Cells 193:206

    Article  CAS  Google Scholar 

  37. Saha S, Chanda S, Dutta A, Sinha TP (2014) Dielectric relaxation and phonon modes of NdCrO3 nanostructure. J Sol‒Gel Sci Technol 69:553

    Article  CAS  Google Scholar 

  38. Mukherjee K, Majumder SB (2012) Synthesis process induced improvement on the gas sensing characteristics of nano-crystalline magnesium zinc ferrite particles. Sens Actuators B 162:229

    Article  CAS  Google Scholar 

  39. Rodríguez-Carvazal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55

    Article  Google Scholar 

  40. Maity R, Sakhyaa AP, Dutta A, Sinha TP (2019) Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Mater Chem Phys 223:78

    Article  CAS  Google Scholar 

  41. Young RA (1993) The Rietveld method. Oxford University Press, London

    Google Scholar 

  42. Tholkappiyan R, Vishista K (2015) Tuning the composition and magnetostructure of dysprosium iron garnets by co-substitution: an XRD, FT-IR, XPS and VSM study. Appl Surf Sci 351:1016

    Article  CAS  Google Scholar 

  43. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Hand book of X-ray photo-electron sepctroscopy. Physical Electronics, INC, USA

    Google Scholar 

  44. Kwok RWM (2000) XPS Peak Fitting Program Version 4.1 http://www.phy.cuhk.edu.hk/~surface/XPSPEAK

  45. Hüfner S (1995) Photoelectron spectroscopy: principles and applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  46. Kim KS (1975) X-ray-photoelectron spectroscopic studies of the electronic structure of CoO. Phys Rev B 11:2177

    Article  CAS  Google Scholar 

  47. Yi L, Le C, Chunhua L, Yaru N, Zhongzi X (2013) Effects of oxygen defects on structure and properties of Sm0.5Sr0.5CoO3-δ annealed in different atmospheres. J Rare Earth 31:1183

    Article  CAS  Google Scholar 

  48. Chuang TJ, Brundle CR, Rice DW (1976) Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surf Sci 59:413

    Article  CAS  Google Scholar 

  49. Dupin JC, Gonbeau D, Benqlilou-Moudden H, Vinatier P, Levasseur A (2001) XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 384:23

    Article  CAS  Google Scholar 

  50. Chen ZH, Yang Q, Li H, Li XH, Wang LF, Tsang SC (2010) Cr–MnOx mixed-oxide catalysts for selective catalytic reduction of NOx with NH3 at low temperature. J Catal 276:56

    Article  CAS  Google Scholar 

  51. Maity R, Sheikh MDS, Dutta A, Sinha TP (2019) Visible light driven photocatalytic activity of granular Pr doped LaFeO3. J Electron Mater 48:4856

    Article  CAS  Google Scholar 

  52. Rotich J, Mwamburi M, Walter N, Maghanga C, Munyati O, Hatwaambo S (2020) Optical characterization of photocatalytic copper doped thin films of anodized titanium. Mater Res Express 7:025505

    CAS  Google Scholar 

  53. Hu B, Man BY, Yang C, Liu M, Chen CS, Gao XG, Xu SC, Wang CC, Sun ZC (2011) The important role of Mn3+ in the room-temperature ferromagnetism of Mn-doped GaN films. Appl Surf Sci 258:525

    Article  CAS  Google Scholar 

  54. Li P, Li J, Feng X, Li J, Hao Y, Zhang J, Wang H, Yin A, Zhou J, Ma X et al. (2019) Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat Commun 10:2177

    Article  CAS  Google Scholar 

  55. She X, Wu J, Xu H, Zhong J, Wang Y, Song Y, Nie K, Liu Y, Yang Y, Rodrigues M-TF et al. (2017) High efficiency photocatalytic water splitting using 2D _-Fe2O3/g-C3N4 Z-scheme catalysts. Adv Energy Mater 7:1700025

    Article  CAS  Google Scholar 

  56. Rhadfi T, Piquemal J-Y, Sicard L, Herbst F, Briot E, Benedetti M, Atlamsani A (2010) Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal A: Gen 386:132

    Article  CAS  Google Scholar 

  57. Kadiiska MB, Maples KR, Mason RP (1989) A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation. Arch Biochem Biophys 275:98

    Article  CAS  Google Scholar 

  58. Jonscher AK (1996) Universal relaxation law. Chelsea Dielectrics Press, London

    Google Scholar 

  59. Mukherjee R, Dutta A, Sinha TP (2016) Dielectric relaxation of rare earth ordered double perovskite oxide Ba2ErTaO6. J Electron Mater 45:846

    Article  CAS  Google Scholar 

  60. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341

    Article  CAS  Google Scholar 

  61. Cole KS, Cole RH (1942) Dispersion and absorption in dielectrics II. Direct current characteristics. J Chem Phys 10:98

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RM (Reg. No. IF160046) acknowledges Department of Science and Technology for providing the financial support through Inspire Fellowship and SS gratefully acknowledges University Grants Commission, New Delhi for providing financial assistance in form of Dr. D. S. Kothari Postdoctoral Fellowship with award letter no. F.4-2/2006 (BSR)/PH/16-17/0026. AD thanks CSIR, New Delhi for providing the financial support in the form of SRA under the Grant No. 13(9099-A)/2020-Pool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alo Dutta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, S., Maity, R., Saha, S. et al. Double perovskite nanostructured Dy2CoMnO6 an efficient visible-light photocatalysts: synthesis and characterization. J Sol-Gel Sci Technol 99, 600–613 (2021). https://doi.org/10.1007/s10971-021-05605-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05605-y

Keywords

Navigation