Skip to main content
Log in

Cu2+ substituted Cr2O3 nanostructures prepared by microwave-assisted method: an investigation of its structural, morphological, optical, and dielectric properties

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We have reported the preparation and characterization of both pure and Cu2+ doped Cr2O3 nanoparticles with different dopant concentrations by the simple, cost-effective microwave-assisted method. As-prepared samples have undergone various characterizations to get an insight into the Cr2O3 nanoparticles. The XRD pattern showed the rhombohedral phase structure of Cr2O3 with an average particle size of ±14 nm. The surface and morphology analysis (FESEM and TEM) revealed a nearly spherical shape with an average particle size of 30–50 nm and the presence of the elemental composition of Cr and Cu was confirmed by the EDAX spectrum. The optical properties (UV–Vis and PL spectra) of Cr2O3 nanostructures were also studied, and results were found to support our further studies. Finally, electrical and dielectric characterization showed enhanced electrical conductivity concerning temperature and frequency.

Highlights

  • Pure and Cu-doped Cr2O3 nanostructures were successfully synthesized.

  • Spherical shape morphology with loosely agglomeration was observed.

  • Electrical studies showed enhanced dielectric constant with temperature.

  • High conductivity of Cu-doped Cr2O3 was in consequence of polaron hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lofrano G, Libralato G, Brown J (2017) Nanotechnologies for environmental remediation. Springer International Publishing, Switzerland

  2. Ghosh CK (2015) Quantum effect on the properties of nanomaterials. In: An introduction to nano. Springer, Berlin, Heidelberg, p 73–111

  3. Periasamy P, Krishnakumar T, Sandhiya M, Sathish M, Chavali M, Siril PF, Devarajan VP (2019) Preparation and comparison of hybridized WO3–V2O5 nanocomposites electrochemical supercapacitor performance in KOH and H2SO4 electrolyte. Mater Lett 236:702–705

    Article  CAS  Google Scholar 

  4. Chavali M, Palanisamy P, Nikolova MP, Wu RJ, Tadiboyina R, Rao PP (2019) Inorganic composites in biomedical engineering. In: Materials for biomedical engineering. Elsevier, Netherlands, p 47–80

  5. Liu JL, Bashir S (2015) Advanced nanomaterials and their applications in renewable energy. Elsevier, Netherlands

  6. Chavali MS, Nikolova MP (2019) Metal oxide nanoparticles and their applications in nanotechnology. SN Appl Sci 1:607

    Article  CAS  Google Scholar 

  7. Palanisamy P, Chavali M, Kumar EM, Etika KC (2020) Hybrid nanocomposites and their potential applications in the field of nanosensors/gas and biosensors. In: Nanofabrication for smart nanosensor applications. Elsevier, Netherlands, p 253–280

  8. Periasamy P, Krishnakumar T, Sathish M, Devarajan VP, Siril PF, Chavali M (2018) Investigation of electrochemical properties of microwave irradiated tungsten oxide (WO3) nanorod structures for supercapacitor electrode in KOH electrolyte. Mater Res Express 5(8):085007

    Article  CAS  Google Scholar 

  9. Hosono H, Ueda K (2017) Transparent conductive oxides. In: Kasap S, Capper P (eds) Springer handbook of electronic and photonic materials. Springer, Cham

  10. Ohodnicki Jr PR, Andio M, Wang C (2014) Optical gas sensing responses in transparent conducting oxides with large free carrier density. J Appl Phys 116(2):024309

    Article  CAS  Google Scholar 

  11. Kamari HM, Al-Hada NM, Baqer AA, Shaari AH, Saion E (2019) A comprehensive study on morphological, structural, and optical properties of Cr2O3 nanoparticle and its antibacterial activities. J Mater Sci: Mater Electron 30(8):8035–8046

    CAS  Google Scholar 

  12. Kadari A, Schemme T, Kadri D, Wollschläger J (2017) XPS and morphological properties of Cr2O3 thin films grown by a thermal evaporation method. Results Phys 7:3124–3129

    Article  Google Scholar 

  13. Narayanan SP, Thakur P, Balan AP, Abraham AA, Mathew F, Yeddala M, Subair T, Tiwary C, Thomas S, Narayanan TN, Ajayan PM (2019) Two dimensional amorphous Cr2O3 modified metallic electrodes for hydrogen evolution reaction. Phys Status Solidi—Rapid Res Lett 13(12):1900025

    Article  CAS  Google Scholar 

  14. Bijker MD, Bastiaens JJJ, Draaisma EA, de Jong LAM, Sourty E, Saied SO, Sullivan JL (2003) The development of a thin Cr2O3 wear protective coating for the advanced digital recording system. Tribology Int 36(4–6):227–233

    Article  CAS  Google Scholar 

  15. Karimian RAMIN, Piri FARIDEH (2013) Synthesis and investigation the catalytic behavior of Cr2O3 nanoparticles. J Nanostructures 3(1):87–92

    Google Scholar 

  16. Barshilia HC, Selvakumar N, Vignesh G, Rajam KS, Biswas A (2009) Optical properties and thermal stability of pulsed-sputter-deposited AlxOy/Al/AlxOy multilayer absorber coatings. Sol Energy Mater Sol Cells 93(3):315–323

    Article  CAS  Google Scholar 

  17. Wang G, Zhang L, Deng J, Dai H, He H, Au CT (2009) Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutane. Appl Catal A: Gen 355(1–2):192–201

    Article  CAS  Google Scholar 

  18. Rao TM, Sayari A (2009) Ethane dehydrogenation over pore-expanded mesoporous silica-supported chromium oxide: 2. Catalytic properties and nature of active sites. J Mol Catal A: Chem 301(1–2):159–165

    Article  CAS  Google Scholar 

  19. Suresh S (2014) Studies on the dielectric properties of CdS nanoparticles. Appl Nanosci 4(3):325–329

    Article  CAS  Google Scholar 

  20. Zulfakar MS, Abdullah H, Jalal WNW, Islam MT (2016) Effect on structural, optical and dielectric properties of mixed (1− x) ZnFe 2 O 4–xSiO 2 as microwave dielectric ceramic material. J Sol-Gel Sci Technol 77(1):218–227

    Article  CAS  Google Scholar 

  21. Varpe AS, Deshpande MD (2020) Study of structural, optical, and dielectric properties of sol–gel derived ZnFe 2 O 4–Al 2 O 3 composite nanoparticles. J Sol-Gel Sci Technol 96(3):718–727

    Article  CAS  Google Scholar 

  22. Nasir S, Asghar G, Malik MA, Anis-ur-Rehman M (2011) Structural, dielectric and electrical properties of zinc doped nickel nanoferrites prepared by simplified sol–gel method. J Sol-Gel Sci Technol 59(1):111–116

    Article  CAS  Google Scholar 

  23. Patel RP, SenthilKannan K, Hariharasuthan R, Gunasekaran S, Divya R, Periasamy P, Maharani NY (2021) Growth and XRD, elemental, mechanical, dielectric, optical and photoconductivity, and surface morphological characterizations of 2-[4-(trifluoromethyl) phenyl]-1H-benzimidazole (TFMPHB) crystals for electronic, mechanical applications Braz J Phys 51(3):339–350

    Article  CAS  Google Scholar 

  24. Das S (2015) Synthesis, characterization and dielectric properties of nanocrystalline nickel. Indian J Pure Appl Phys 52(6):386–390

    Google Scholar 

  25. Swatsitang E, Putjuso T (2014) Dielectric properties of Ni-doped Ba 0.5 Sr 0.5 TiO 3 ceramics prepared with hydrothermal synthesized nanopowders. J Sol-Gel Sci Technol 72(1):30–36

    Article  CAS  Google Scholar 

  26. Robertson J (2004) High dielectric constant oxides. Eur Phys J Appl Phys 28(3):265–291

    Article  CAS  Google Scholar 

  27. Hassen AMES, El Sayed AM, Morsi WM, El-Sayed S (2012) Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol. J Appl Phys 112(9):093525

    Article  CAS  Google Scholar 

  28. Flower GL, Baskaran GS, Gandhi Y, Rao CS (2009) Influence of Cr2O3 ions on dielectric properties of lead gallium phosphate glass system. Mater Sci Eng 2:012026–012032

    Google Scholar 

  29. Abdullah MM, Rajab FM, Al-Abbas SM (2014) Structural and optical characterization of Cr2O3 nanostructures: evaluation of its dielectric properties. AIP Adv 4(2):027121

    Article  CAS  Google Scholar 

  30. Han Y, Jia X, Liu F, Deng L, Zhang X (2019) Effect of Cr2O3 content on high-temperature dielectric properties and crystallisation of CMAS glass-ceramics. Mater Res Express 6(7):075213

    Article  CAS  Google Scholar 

  31. Hassen A, El-Sayed S, Morsi WM, El Sayed AM (2014) Preparation, dielectric and optical properties of Cr2O3/PVC nanocomposite films. J Adv Phys 4(3):571–584

    Article  Google Scholar 

  32. Makhlouf SA, Bakr ZH, Al-Attar H, Moustafa MS (2013) Structural, morphological and electrical properties of Cr2O3 nanoparticles. Mater Sci Eng: B 178(6):337–343

    Article  CAS  Google Scholar 

  33. Al-Kuhaili MF, Durrani SMA (2007) Optical properties of chromium oxide thin films deposited by electron-beam evaporation. Optical Mater 29(6):709–713

    Article  CAS  Google Scholar 

  34. Ivanova T, Gesheva KA, Sharlandjiev P, Koserkova-Georgieva A (2007) Technology and optoelectronic properties of APCVD Cr2O3 and Mo–Cr mixed oxide thin films. Surf Coat Technol 201(22–23):9313–9318

    Article  CAS  Google Scholar 

  35. Meyer M (1940) Cr2O3 as a catalyst in KClO3 decomposition. J Chem Educ 17(10):494

    Article  CAS  Google Scholar 

  36. Zykova A, Livanova A, Minakova T, Bugrova T, Mamontov G (2016) Cr2O3/Al-Al2O3 composite catalysts for hydrocarbons dehydrogenation prepared from aluminum nanopowder. In: AIP Conference Proceedings, AIP Publishing, Russia, p 030018

  37. Bradford MC, Konduru MV, Fuentes DX (2003) Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process Technol 83(1–3):11–25

    Article  CAS  Google Scholar 

  38. Manjunath S, Prasad, M.V.N. Ambika (2013) Spectroscopic and electrical properties of Polyaniline/Cr2O3 composites and their application as humidity sensor. Int J Sci Res 1(4):400–404

    Google Scholar 

  39. Tsuzuki T, McCormick PG (2000) Synthesis of Cr2O3 nanoparticles by mechanochemical processing. Acta Materialia 48(11):2795–2801

    Article  CAS  Google Scholar 

  40. Vollath D, Szabó DV, Willis JO (1996) Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma. Mater Lett 29(4–6):271–279

    Article  CAS  Google Scholar 

  41. Noguchi S, Mizuhashi M (1981) Optical properties of Cr Co oxide films obtained by chemical spray deposition: substrate temperature effects. Thin Solid Films 77(1–3):99–106

    Article  CAS  Google Scholar 

  42. Madi C, Tabbal M, Christidis T, Isber S, Nsouli B, Zahraman K (2007) Microstructural characterization of chromium oxide thin films grown by remote plasma assisted pulsed laser deposition J Phys: Conf Ser 59:128

    Google Scholar 

  43. Vaidhyanathan B, Rao KJ (1997) Microwave assisted synthesis of technologically important transition metal silicides. J Mater Res 12(12):3225–3229

    Article  CAS  Google Scholar 

  44. Wang Z, Xiao W, Tian M, Qin N, Shi H, Zhang X, Zha W, Tao J, Tian J (2020) Effects of copper dopants on the magnetic property of lightly Cu-doped ZnO nanocrystals. Nanomaterials 10(8):1578

    Article  CAS  Google Scholar 

  45. Nath SS, Chakdar D, Gope G, Kakati J, Kalita B, Talukdar A, Avasthi DK (2009) Green luminescence of ZnS and ZnS: Cu quantum dots embedded in zeolite matrix. J Appl Phys 105(9):094305

    Article  CAS  Google Scholar 

  46. Bhaskarjyoti B, Kalita PK (2013) Structural and optical properties of ZnS: Cu transparent nanosheets. Res J Phys Sci 1(1):2–5

    Google Scholar 

  47. Geszke-Moritz M, Clavier G, Lulek J, Schneider R (2012) Copper-or manganese-doped ZnS quantum dots as fluorescent probes for detecting folic acid in aqueous media. J Lumin 132(4):987–991

    Article  CAS  Google Scholar 

  48. Mohanapandian K, Krishnan A (2016) Synthesis, structural, morphological and optical properties of Cu2+. doped Cr2O3 nanoparticles Int J Adv Eng Technol 7(2):273–279

    Google Scholar 

  49. Cullity BD (1977) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, New York, p 102

  50. Bedir M, Öztas M, Yazici AN, Kafadar EV (2006) Characterization of undoped and Cu-doped ZnO thin films deposited on glass substrates by spray pyrolysis. Chin Phys Lett 23:939–942

    Article  CAS  Google Scholar 

  51. Tilley RJD (2008) Defects in solids. John Wiley & Sons, Hoboken, NJ, USA

  52. Ji A, Wang W, Song G, Wang Q, Sun C, Wen L (2004) Microstructures and mechanical properties of chromium oxide films by arc ion plating. Mater Lett 58:1993–1998

    Article  CAS  Google Scholar 

  53. Nongjai R, Khan S, Asokan K, Ahmed H, Khan I (2012) Magnetic and electrical properties of In doped cobalt ferrite nanoparticles. J Appl Phys 112(8):084321

    Article  CAS  Google Scholar 

  54. Lin HT, Huang JL, Lo WT, Wen-Cheng J(2009) Investigation on carbonizing behaviors of nanometer-sized Cr2O3 particles dispersed on alumina particles by metalorganic chemical vapor deposition in fluidized bed. J Mater Res 20(8):2154–2160

    Article  CAS  Google Scholar 

  55. Mitra A, Mahapatra AS, Mallick A, Shaw A, Bhakta N, Chakrabarti PK (2018) Improved magneto-electric properties of LaFeO3 in La0. 8Gd0. 2Fe0. 97Nb0. 03O3. Ceram Int 44(4):4442–4449

    Article  CAS  Google Scholar 

  56. Ahmed NH, Srinivas NN (1997) Review of space charge measurements in dielectrics. IEEE Trans Dielectr Electr Insulation 4(5):644–656

    Article  CAS  Google Scholar 

  57. Austin IG, Mott NF (1969) Polarons in crystalline and non-crystalline materials. Adv Phys 18(71):41–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Mohanapandian or P. Periasamy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanapandian, K., Kamala, S.S.P., Periasamy, P. et al. Cu2+ substituted Cr2O3 nanostructures prepared by microwave-assisted method: an investigation of its structural, morphological, optical, and dielectric properties. J Sol-Gel Sci Technol 99, 546–556 (2021). https://doi.org/10.1007/s10971-021-05596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05596-w

Keywords

Navigation