Skip to main content
Log in

Synthesis of CoFe2O4 superparamagnetic nanoparticles using a rapid thermal processing furnace with halogen lamps

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work deals with the synthesis of superparamagnetic cobalt ferrite (CoFe2O4) nanoparticles, via a sol-gel method that uses gelatin as an organic precursor and a rapid thermal processing furnace with halogen lamps as a heat source. TEM, HRTEM, XRD, VSM and Mössbauer spectroscopy measurements were performed, at room temperature, to characterize the samples. Nanoparticles with an average size of 5–10 nm and microstrain of the order of 10−4–10−3 were obtained. Magnetic hardening was also observed with increased nanoparticle size, in addition to an increase in the anisotropy constant, which ranged from 1.7 to 4.7·106 erg/cm3. The saturation magnetization decreased with decreasing size due to the formation of a magnetically dead layer on the surface (thickness = 0.6–0.7 nm). The Mössbauer spectra showed an increase in the superparamagnetic phase for samples with smaller nanoparticles and less dispersion.

Highlights

  • The protein sol–gel method using gelatin is a fast and low-cost process for the production of nanoparticulate powders.

  • The use of RTP furnaces in calcination helps to control the energy supplied to the sample.

  • The advantages of using halogen lamps in RTP furnaces are low cost, uniform heating, and good temperature control.

  • In order to have a superparamagnetic material, it is necessary to produce nanoparticles with a size below a critical size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

RTP:

rapid thermal processing

RTP-HL:

halogen lamp RTP systems

Sch:

Scherrer’s formula

WHP:

Williamson–Hall plot

SSP:

size–strain plot

XRD:

X-ray diffraction

TEM:

transmission electron microscopy

HRTEM:

high-resolution transmission electron microscopy

VSM:

vibrating-sample magnetometry

References

  1. Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LlM, Muñoz JS, Mikhov M (1998) Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater 183:163–172. https://doi.org/10.1016/S0304-8853(97)01031-7

    Article  CAS  Google Scholar 

  2. Carpenter EE (2001) Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater 225:17–20. https://doi.org/10.1016/S0304-8853(00)01222-1

    Article  CAS  Google Scholar 

  3. Kumar L, Kar M (2011) Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite. IEEE Trans Magn 47:3645–3648. https://doi.org/10.1109/TMAG.2011.2151841

    Article  CAS  Google Scholar 

  4. Rajendran M, Pullar RC, Bhattacharya AK, Das D, Chintalapudi SN, Majumdar CK (2001) Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232:71–83. https://doi.org/10.1016/S0304-8853(01)00151-2

    Article  CAS  Google Scholar 

  5. Jin ZQ, Liu JP (2006) Rapid thermal processing of magnetic materials. J Phys D: Appl Phys 39:R227–R244. https://doi.org/10.1088/0022-3727/39/14/R01

    Article  CAS  Google Scholar 

  6. Chu K-T, Jin ZQ, Chakka VM, Liu JP (2005) Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites. J Phys D: Appl Phys 38:4009–4014. https://doi.org/10.1088/0022-3727/38/22/002

    Article  CAS  Google Scholar 

  7. Corbiere TCM, Ressnig D, Giordano C, Antonietti M (2013) Focused radiation heating for controlled high temperature chemistry, exemplified with the preparation of vanadium nitride nanoparticles. RSC Adv 3:15337–15343. https://doi.org/10.1039/C3RA41040D

    Article  CAS  Google Scholar 

  8. Yano K, Nandwana V, Poudyal N, Rong C-B, Liu JP (2008) Rapid thermal annealing of FePt nanoparticles. J Appl Phys 104:013918. https://doi.org/10.1063/1.2953078

    Article  CAS  Google Scholar 

  9. Zeng H, Sun S, Sandstrom RL, Murray CB (2003) Chemical ordering of FePt nanoparticle self-assemblies by rapid thermal annealing. J Magn Magn Mater 266:227–232. https://doi.org/10.1016/S0304-8853(03)00482-7

    Article  CAS  Google Scholar 

  10. Koteeswara Reddy N, Ahsanulhaq Q, Hahn YB (2009) Influence of RTA treatment on the physical properties of well-aligned ZnO nanorods. Physica E 41:368–372. https://doi.org/10.1016/j.physe.2008.08.061

    Article  CAS  Google Scholar 

  11. Roozeboom F, Dirne FWA (1995) Rapid thermal annealing of amorphous and nanocrystalline soft-magnetic alloys in a static magnetic field. J Appl Phys 77:5293–5297. https://doi.org/10.1063/1.359283

    Article  CAS  Google Scholar 

  12. Roozeboom F, Abedrabbo S, Ravindra NM, Walk H, Falter M (1998) Rapid thermal magnetic annealing as an emerging technology in field-annealing of thin magnetic films for recording heads. Mater Sci Semiconductor Proces 1:303–315. https://doi.org/10.1016/S1369-8001(98)00024-9

    Article  CAS  Google Scholar 

  13. Maia AOG, Meneses CT, Menezes AS, Flores WH, Melo DMA, Sasaki JM (2006) Synthesis and X-ray structural characterization of NiO nanoparticles. J Non-Cryst Solids 352:3730–3733. https://doi.org/10.1016/j.jnoncrysol.2006.03.103

    Article  CAS  Google Scholar 

  14. Kumar L, Kar M (2011) Influence of Al3+ ion concentration on the crystal structure and magnetic anisotropy of nanocrystalline spinel cobalt ferrite. J Magn Magn Mater 323:2042–2048. https://doi.org/10.1016/j.jmmm.2011.03.010

    Article  CAS  Google Scholar 

  15. Mooney KE, Nelson JA, Wagner MJ (2004) Superparamagnetic cobalt ferrite nanocrystals synthesized by alkalide reduction. Chem Mater 16:3155–3161. https://doi.org/10.1021/cm040012

    Article  CAS  Google Scholar 

  16. Scherrer P, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Mathematisch-Physikalische Klasse (1918) 98–100, https://eudml.org/doc/59018 (Accessed 23 Nov 2020).

  17. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metallurgica 1:22-31, http://www.xray.cz/xray/csca/kol2011/kurs/dalsi-cteni/clanky/Williamson-ActaMet-1953-1-22-WH-Plot.pdf (Accessed 23 Nov 2020).

  18. Manniamal K, Madhu G, Biju V (2017) X-ray diffraction line profile analysis of nanoestructured nickel oxide: shape factor and convolution of crystallite size and microstrain contributions. Physica E 85:214–222. https://doi.org/10.1016/j.physe.2016.08.035

    Article  CAS  Google Scholar 

  19. Machado FLA, Soares JM, Conceição OLA, Choi ES, Balicas L (2017) Magnetic properties of the nanocomposite CoFe2O4/FeCo-FeO at a high H/T regime. J Magn Magn Mater 424:323–326. https://doi.org/10.1016/j.jmmm.2016.10.079

    Article  CAS  Google Scholar 

  20. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267. https://doi.org/10.1021/ja000784g

    Article  CAS  Google Scholar 

  21. Vázquez-Vázquez C, López-Quintela MA, Buján-Núñez MC, Rivas J (2011) Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles. J Nanopart Res 13:1663–1676. https://doi.org/10.1007/s11051-010-9920-7

    Article  CAS  Google Scholar 

  22. Babić-Stojić B, Jokanović V, Milivojević D, Jagličić Z, Makovec D, Jović N, Marinović-Cincović M (2013) Magnetic and structural studies of CoFe2O4 nanoparticles suspended in an organic liquid. J Nanomater 2013, https://doi.org/10.1155/2013/741036.

  23. Dyar MD, Agresti DG, Schaefer MW, Grant CA, Sklute EC (2006) Mössbauer spectroscopy of earth and planetary materials. Annu Rev Earth Planet Sci 34:83–125. https://doi.org/10.1146/annurev.earth.34.031405.125049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Laboratório de Materiais Avançados at the Universidade Federal do Ceará, to the Laboratório de Medidas Ópticas e Magnéticas at the Universidade do Estado do Rio Grande do Norte, and to the Laboratório Multiusuário de Microscopia de Alta Resolução at the Universidade Federal de Goiás. We also thank CNPq and CAPES for their financial support.

Conflict of Interest

There are no conflicts of interest. The research that originated this article had financial support from CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development) and has already been commented on and given the due gratitude they demand. The partner laboratories LAMOP (Laboratório de Medidas Ópticas e Magnéticas - UERN), LABMIC (Laboratório Multiusuário de Microscopia de Alta Resolução - UFG) and the Advanced Materials Laboratory - UFC also require only acknowledgments at the end of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André de Oliveira Girão Maia.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maia, A.d.O.G., Oliveira, F.G.S., Cordeiro, C.H.N. et al. Synthesis of CoFe2O4 superparamagnetic nanoparticles using a rapid thermal processing furnace with halogen lamps. J Sol-Gel Sci Technol 99, 527–533 (2021). https://doi.org/10.1007/s10971-021-05589-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05589-9

Keywords

Navigation