Skip to main content
Log in

Synthesis of hybrid polymeric fibers of different functionalized alkoxysilane coupling agents obtained via sol–gel and electrospinning technique: effect on the morphology by addition of PVA

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid functionalized alkoxysilane/PDMS-OH and alkoxysilane/PDMS-OH/PVA polymers were synthesized through acid catalysis sol–gel technique and electrospinning procedure using hydroxyl-terminated poly(dimethylsiloxane) (PDMS-OH), poly(vinyl alcohol) (PVA), and different functionalized alkoxysilane coupling agents: 3-cyanopropyl(triethoxy)silane (CPTEOS), 3-aminopropyl(triethoxy)silane (APTEOS) and trimethoxy(2-phenylethyl)silane (TMPS). Kinetic differences between hydrolyses and condensation of the three functionalized alkoxysilane coupling agents required different curing times to achieve the desired viscosity and enhance electrospinnability. The superficial morphology of the hybrid polymers analyzed by scanning electron microscopy (SEM) showed that the electrospinning solution composed of PDMS-OH and functionalized alkoxysilane coupling agents were deposited as beads. However, when that sol solution was mixed with PVA, a mesh material was obtained. Adding PVA to the functionalized alkoxysilanes sol–gel polymer resulted in improved electrospinnability of functionalized silica-PVA, thereby obtaining a more fiber-like morphology. Besides, sol–gel reactions were confirmed with FTIR, and contact angle test results show that the materials obtained have higher hydrophilicity when they contain PVA.

Highlights

  • Sol-gel solutions from PDMS and alkoxysilane agents were electrospun to get hybrid polymer.

  • Electrospinning of the sol-gel solution with PVA results in more favorable effects to obtain fiber.

  • Fibers with PVA obtained in the electrospinning process show hydrophilic characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu Y, He J-H, Yu J-Y, Zeng H-M (2008) Polym Int 57:632. https://doi.org/10.1002/pi.2387

    Article  CAS  Google Scholar 

  2. Xue J, Wu T, Dai Y, Xia Y (2019) Chem Rev 119:5298. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  Google Scholar 

  3. Khan WS, Asmatulu R, Ceylan M, Jabbarnia A (2013) Fiber Polym 14:1235. https://doi.org/10.1007/s12221-013-1235-8

    Article  CAS  Google Scholar 

  4. Li D, Frey MW, Baeumner AJ (2006) J Membr Sci 279:354. https://doi.org/10.1016/j.memsci.2005.12.036

    Article  CAS  Google Scholar 

  5. Bazhban M, Nouri M, Mokhtari J (2013) Chin J Polym Sci 31:1343. https://doi.org/10.1007/s10118-013-1309-5

    Article  CAS  Google Scholar 

  6. Haider A, Haider S, Kang I-K (2018) Arab J Chem 11:1165. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  7. Ji L, Lin Z, Medford AJ, Zhang X (2009) Carbon 47:3346. https://doi.org/10.1016/j.carbon.2009.08.002

    Article  CAS  Google Scholar 

  8. Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) J Mater Sci 49:6143. https://doi.org/10.1007/s10853-014-8308-y

    Article  CAS  Google Scholar 

  9. Han L, Andrady AL, Ensor DS (2013) Sens Actuators B: Chem 186:52. https://doi.org/10.1016/j.snb.2013.05.069

    Article  CAS  Google Scholar 

  10. Cho JW, Sul KI (2001) Fiber Polym 2:135. https://doi.org/10.1007/BF02875326

    Article  CAS  Google Scholar 

  11. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, San Diego

    Google Scholar 

  12. Hench LL, West JK (1990) Chem Rev 90:33. https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  13. Rahimi A (2004) Iran Polym J 13:149

    CAS  Google Scholar 

  14. Avnir D, Coradin T, Lev O, Livage J (2006) J Mater Chem 16:1013. https://doi.org/10.1039/B512706H

    Article  CAS  Google Scholar 

  15. Yoshida M, Prasad PN (1996) Chem Mater 8:235. https://doi.org/10.1021/cm950331o

    Article  CAS  Google Scholar 

  16. Kordas G, Wu K, Brahme US, Friedmann TA, Ginsberg DM (1987) Mater Lett 5:417. https://doi.org/10.1016/0167-577X(87)90053-X

    Article  CAS  Google Scholar 

  17. Wu S, Li F, Wu Y, Xu R, Li G (2010) Chem Comm 46:1694. https://doi.org/10.1039/B925296G

    Article  CAS  Google Scholar 

  18. Rahman IA, Padavettan V (2012) J Nanomater 2012:132424. https://doi.org/10.1155/2012/132424

    Article  CAS  Google Scholar 

  19. Kumar A, Gaurav, Malik AK, Tewary DK, Singh B (2008) Anal Chim Acta 610:1. https://doi.org/10.1016/j.aca.2008.01.028

    Article  CAS  Google Scholar 

  20. Naudin G, Ceratti DR, Faustini M (2017) Sol-gel derived functional coatings for optics. in: advances in sol-gel derived materials and technologies. Springer International Publishing, p. 61. https://doi.org/10.1007/978-3-319-50144-4_3

  21. Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco LM, Pagliaro M (2013) Chem Rev 113:6592. https://doi.org/10.1021/cr300399c

    Article  CAS  Google Scholar 

  22. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Langmuir 28:5834. https://doi.org/10.1021/la300049j

    Article  CAS  Google Scholar 

  23. Xu Y, Zhou W, Zhang L, Cheng L (2000) J Mater Process Technol 101:44. https://doi.org/10.1016/S0924-0136(99)00450-1

    Article  Google Scholar 

  24. Shao C, Kim H-Y, Gong J, Ding B, Lee D-R, Park S-J (2003) Mater Lett 57:1579. https://doi.org/10.1016/S0167-577X(02)01036-4

    Article  CAS  Google Scholar 

  25. Bi L, Wang J-w, Chen F, Fu Q (2013) Chin J Polym Sci 31:1546. https://doi.org/10.1007/s10118-013-1345-1

    Article  CAS  Google Scholar 

  26. Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Carbohydr Polym 67:403. https://doi.org/10.1016/j.carbpol.2006.06.010

    Article  CAS  Google Scholar 

  27. Wang H, Lu X, Zhao Y, Wang C (2006) Mater Lett 60:2480. https://doi.org/10.1016/j.matlet.2006.01.021

    Article  CAS  Google Scholar 

  28. Pérez-Padilla Y, Medina Cetina SA, Ávila-Ortega A, Barrón-Zambrano JA, Vilchis-Néstor AR, Carrera-Figueiras C, Muñoz-Rodríguez D (2018) J Mex Chem Soc 62:348. https://doi.org/10.29356/jmcs.v62i2.431

    Article  CAS  Google Scholar 

  29. Burgos-Tan MJ, Pérez-Padilla Y, Avila-Ortega A, Barrón-Zambrano JA, Vilchis-Néstor AR, Carrera-Figueiras C, Muñoz-Rodríguez D (2017) Chem Pap 71:1205. https://doi.org/10.1007/s11696-016-0113-4

    Article  CAS  Google Scholar 

  30. Muñoz-Rodríguez D, Pérez-Padilla Y, Ávila-Ortega A, Barrón-Zambrano JA, Carrera-Figueiras C (2021) J Coat Technol Res https://doi.org/10.1007/s11998-021-00471-3

  31. Irani M, Keshtkar AR, Moosavian MA (2012) Chem Eng J 200-202:192. https://doi.org/10.1016/j.cej.2012.06.054

    Article  CAS  Google Scholar 

  32. Shao C, Guan H, Liu Y, Gong J, Yu N, Yang X (2004) J Cryst Growth 267:380. https://doi.org/10.1016/j.jcrysgro.2004.03.065

    Article  CAS  Google Scholar 

  33. Bange JP, Patil LS, Gautan DK (2008) Prog Electromagn Res M 3:165. https://doi.org/10.2528/PIERM08060401

    Article  Google Scholar 

  34. Babonneau F, Thorne K, Mackenzie JD (1989) Chem Mater 1:554. https://doi.org/10.1021/cm00005a017

    Article  CAS  Google Scholar 

  35. Cui X, Zhu G, Pan Y, Shao Q, Zhao C, Dong M, Zhang Y, Guo Z (2018) Polymer 138:203. https://doi.org/10.1016/j.polymer.2018.01.063

    Article  CAS  Google Scholar 

  36. Ávila-Martínez MA, Pérez-Padilla Y, Medina-Peralta S, Ávila-Ortega A, Muñoz-Rodríguez D (2021) J Coat Technol Res https://doi.org/10.1007/s11998-021-00462-4

  37. Yang N (2008) Phys Can 64:141

    Google Scholar 

  38. Lee JS, Choi KH, Ghim HD, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) J Appl Polym Sci 93:1638. https://doi.org/10.1002/app.20602

    Article  CAS  Google Scholar 

  39. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K (2009) J Mater Sci 44:1357. https://doi.org/10.1007/s10853-008-3010-6

    Article  CAS  Google Scholar 

  40. Andrady AL (2007) Electrospinning basics. in: science and technology of polymer nanofibers. p. 55. https://doi.org/10.1002/9780470229842.ch3

  41. Li D, Wang Y, Xia Y (2003) Nano Lett 3:1167. https://doi.org/10.1021/nl0344256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Council for Science and Technology, CONACYT; CB-167800 to D.M.-R. and CB-A1-S-38216 to Y.P.-P. The authors are grateful to Dra. R. Sulub-Sulub for her technical support in FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamile Pérez-Padilla.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla-Hernández, R.E., Medina-Ramirez, A., Avila-Ortega, A. et al. Synthesis of hybrid polymeric fibers of different functionalized alkoxysilane coupling agents obtained via sol–gel and electrospinning technique: effect on the morphology by addition of PVA. J Sol-Gel Sci Technol 99, 25–38 (2021). https://doi.org/10.1007/s10971-021-05567-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05567-1

Keywords

Navigation