Skip to main content
Log in

Fabrication of polypropylene-g-poly(acrylic acid) based microfibers by combination of photo-induced metal-free ATRP and electrospinning process

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Undoubtedly, with the increasing awareness of the scientific community and the public, current trends are directing research to implement effective and combined yet nature friendly methodologies. Due to advantages such as adaptability and versatility, the combination of electrospinning and light is increasingly intriguing. This study proposes a new strategy for producing amphiphilic fibers from graft copolymer of polypropylene (PP) and poly (acrylic acid) (FPP-g-PAA). The first step includes the synthesis of copolymer comprising PP main chain possessing poly (tertiary butyl acrylate) pendant groups via photo-induced metal-free atom transfer radical polymerization (PIMF-ATRP) of tertiary butyl acrylate (t-BA) in the presence of perylene and chlorinated polypropylene (PP-Cl) as a macro photo-initiator (PP-g-PtBA). Then, FPP-g-PAA is prepared by acidolysis of t-BA units to acrylic acid moieties. In the second step, the PP-g-PAA is successful electrospun to fabricate the ultimate amphiphilic fibers. The chemical steps are monitored and confirmed by Fourier-transform infrared (FT-IR) and proton magnetic resonance (1H-NMR) spectroscopies, and gel permeation chromatography (GPC). Following the structural characterization, morphological and wetting properties are systematically determined with scanning electron microscopy (SEM) and water contact angle (WCA) measurement by depending on surface characteristics of the samples. Thermal behaviour of precursors and synthesized electrospun fibers has also been evaluated and compared by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The SEM images display that the achieved fibers were smooth and circular with the average diameters ranging from 3.3 μm up to 3.9 μm. After WCA measurements, it was elucidated that the hydrophobic nature of electrospun PP-g-PtBA was transformed into amphiphilic structure by hydrolysis of PtBA pendant groups. The reported approach is very encouraging and expected to trigger further development for scientists preparing various types of amphiphilic polyolefin fiber based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Westlie AH, Chen EYX, Holland CM, Stahl SS, Doyle M, Trenor SR, Knauer KM (2022) Polyolefin innovations toward circularity and sustainable alternatives. Macromol Rapid Commun 43:2200492

    Article  CAS  Google Scholar 

  2. Acik G, Altinkok C, Acik B (2022) Biodegradable and antibacterial chlorinated polypropylene/chitosan based composite films for biomedical applications. Polym Bull 79:9997–10011

    Article  CAS  Google Scholar 

  3. Chung T (2002) Synthesis of functional polyolefin copolymers with graft and block structures. Prog Polym Sci 27:39–85

    Article  CAS  Google Scholar 

  4. Plummer CM, Li L, Chen Y (2020) The post-modification of polyolefins with emerging synthetic methods. Polym Chem 11:6862–6872

    Article  CAS  Google Scholar 

  5. Zou C, Zhang H, Tan C, Cai Z (2020) Polyolefins with intrinsic antimicrobial properties. Macromolecules 54:64–70

    Article  Google Scholar 

  6. Balamurugan S, Mandale A, Badrinarayanan S, Vernekar S (2001) Photochemical bromination of polyolefin surfaces. Polymer 42:2501–2512

    Article  CAS  Google Scholar 

  7. Zou C, Chen C (2020) Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew Chem Int Ed 59:395–402

    Article  CAS  Google Scholar 

  8. Yeung CW, Teo JY, Loh XJ, Lim JY (2021) Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater Lett 3:1660–1676

    Article  CAS  Google Scholar 

  9. Chen Y, Yu P, Feng C, Wang Y, Han Q, Zhang Q (2017) Synthesis of polysiloxane with quaternized N-halamine moieties for antibacterial coating of polypropylene via supercritical impregnation technique. Appl Surf Sci 419:683–691

    Article  CAS  Google Scholar 

  10. Chen C (2018) Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat Rev Chem 2:6–14

    Article  CAS  Google Scholar 

  11. Altinkök Ç (2023) Facile preparation of polyolefin-based amphiphilic graft copolymer fibers by combination of photoinduced graft copolymerization and electrospinning. Turk J Chem 47:583–590

    Article  PubMed  PubMed Central  Google Scholar 

  12. More VK, Krishnaswamy S, Singh MK (2023) Comparative studies on simultaneous chlorination of LDPE and PP in paraffin. Mater Today: Proceedings 72:2713–2719

    Google Scholar 

  13. Balzade Z, Sharif F, Ghaffarian Anbaran SR (2022) Tailor-made functional Polyolefins of complex architectures: recent advances, applications, and prospects. Macromolecules 55:6938–6972

    Article  CAS  Google Scholar 

  14. Acik G, Tasdelen MA (2016) Graft copolymers from commercial chlorinated polypropylene via cu (0)-mediated atom transfer radical polymerization. Polym Int 65:1458–1463

    Article  CAS  Google Scholar 

  15. Hazer B, Ashby RD (2023) Synthesis of poly vinyl chloride/chlorinated polypropylene-active natural substance derivatives for potential packaging materials application. Tannic acid, menthol and lipoic acid. Food Chem 403:134475

    Article  CAS  PubMed  Google Scholar 

  16. Liu Y, Sun Y, Hao J, Wang W, Song Y, Zhou Z (2019) Interface bonding properties and mechanism of poplar board-veneered wood fiber/polypropylene composites with chlorinated polypropylene films as an intermediate layer. Langmuir 35:13934–13941

    Article  CAS  PubMed  Google Scholar 

  17. Altinkok C, Sagdic G, Daglar O, Ayra ME, Durmaz YY, Durmaz H, Acik G (2023) A new strategy for direct solution electrospinning of phosphorylated poly (vinyl chloride)/polyethyleneimine blend in alcohol media. Eur Polym J 183:111750

    Article  CAS  Google Scholar 

  18. Acik G (2021) Fabrication of polypropylene fibers possessing quaternized ammonium salt based on the combination of CuAAC click chemistry and electrospinning. React Funct Polym 168:105035

    Article  CAS  Google Scholar 

  19. Yu Y, Xiong S, Huang H, Zhao L, Nie K, Chen S, Xu J, Yin X, Wang H, Wang L (2020) Fabrication and application of poly (phenylene sulfide) ultrafine fiber. React Funct Polym 150:104539

    Article  CAS  Google Scholar 

  20. Taokaew S, Chuenkaek T (2024) Developments of Core/Shell chitosan-based nanofibers by electrospinning techniques: a review. Fibers 12:26

    Article  CAS  Google Scholar 

  21. Li H, Wu W, Bubakir MM, Chen H, Zhong X, Liu Z, Ding Y, Yang W (2014) Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup. J Appl Polym Sci 131(7). https://doi.org/10.1002/app.40080

  22. Zakaria M, Nakane K (2020) Fabrication of polypropylene nanofibers from polypropylene/polyvinyl Butyral blend films using laser-assisted melt-electrospinning. Polym Eng Sci 60:362–370

    Article  CAS  Google Scholar 

  23. Lim J, Choi S, Kim HS (2023) Behavior of melt electrospinning/blowing for polypropylene fiber fabrication. Polym Int 72:120–125

    Article  CAS  Google Scholar 

  24. Li Q-S, He H-W, Fan Z-Z, Zhao R-H, Chen F-X, Zhou R, Ning X (2020) Preparation and performance of ultra-fine polypropylene antibacterial fibers via melt electrospinning. Polymers 12:606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Altinkok C, Oytun F, Basarir F, Tasdelen MA (2017) Cysteamine-functionalized silver nanowires as hydrogen donor for type II photopolymerization. J Photochem Photobiol A Chem 346:479–484

    Article  CAS  Google Scholar 

  26. Kaastrup K, Sikes H (2016) Using photo-initiated polymerization reactions to detect molecular recognition. Chem Soc Rev 45:532–545

    Article  CAS  PubMed  Google Scholar 

  27. Yilmaz G, Aydogan B, Temel G, Arsu N, Moszner N, Yagci Y (2010) Thioxanthone− fluorenes as visible light photoinitiators for free radical polymerization. Macromolecules 43:4520–4526

    Article  CAS  Google Scholar 

  28. Keleş E, Hazer B, Cömert FB (2013) Synthesis of antibacterial amphiphilic elastomer based on polystyrene-block-polyisoprene-block-polystyrene via thiol-ene addition. Mater Sci Eng C 33:1061–1066

    Article  Google Scholar 

  29. Şanal T, Oruç O, Öztürk T, Hazer B (2015) Synthesis of pH-and thermo-responsive poly (ε-caprolactone-b-4-vinyl benzyl-g-dimethyl amino ethyl methacrylate) brush type graft copolymers via RAFT polymerization. J Polym Res 22:1–12

    Article  Google Scholar 

  30. Dadashi-Silab S, Kim K, Lorandi F, Szczepaniak G, Kramer S, Peteanu L, Matyjaszewski K (2022) Red-light-induced, copper-catalyzed atom transfer radical polymerization. ACS Macro Lett 11:376–381

    Article  CAS  PubMed  Google Scholar 

  31. Coessens V, Pintauer T, Matyjaszewski K (2001) Functional polymers by atom transfer radical polymerization. Prog Polym Sci 26:337–377

    Article  CAS  Google Scholar 

  32. Acik G (2023) Synthesis of soybean oil biomass Main chain poly (acrylic acid)-poly (ɛ-Caprolactone) based heterograft copolymer by simultaneous photo-induced metal-free ATRP and ring-opening polymerizations. J Polym Environ 31:102–111

    Article  CAS  Google Scholar 

  33. Mori H, Müller AH (2003) New polymeric architectures with (meth) acrylic acid segments. Prog Polym Sci 28:1403–1439

    Article  CAS  Google Scholar 

  34. Zhang JL, Farias-Mancilla B, Kulai I, Hoeppener S, Lonetti B, Prevost S, Ulbrich J, Destarac M, Colombani O, Schubert US, Guerrero-Sanchez C, Harrisson S (2021) Effect of hydrophilic monomer distribution on self-assembly of a pH-responsive copolymer: spheres, Worms and vesicles from a single copolymer composition. Angewandte Chemie-Int Ed 60:4925–4930

    Article  CAS  Google Scholar 

  35. Arslan M, Acik G, Tasdelen MA (2019) The emerging applications of click chemistry reactions in the modification of industrial polymers. Polym Chem 10:3806–3821

    Article  CAS  Google Scholar 

  36. Sharma N, Liu YA (2019) 110th anniversary: an effective methodology for kinetic parameter estimation for modeling commercial polyolefin processes from plant data using efficient simulation software tools. Ind Eng Chem Res 58:14209–14226

    Article  CAS  Google Scholar 

  37. Jenkins DW, Hudson SM (2001) Review of vinyl graft copolymerization featuring recent advances toward controlled radical-based reactions and illustrated with chitin/chitosan trunk polymers. Chem Rev 101:3245–3273

    Article  CAS  PubMed  Google Scholar 

  38. Givens SR, Gardner KH, Rabolt JF, Chase DB (2007) High-temperature electrospinning of polyethylene microfibers from solution. Macromolecules 40:608–610

    Article  CAS  Google Scholar 

  39. Acik G, Cansoy CE, Tasdelen MA (2019) Synthesis of fluorinated polypropylene using CuAAC click chemistry. J Appl Polym Sci 136:47072

    Article  Google Scholar 

  40. Pang XC, Zhao L, Akinc M, Kim JK, Lin ZQ (2011) Novel amphiphilic multi-arm, star-like block copolymers as Unimolecular micelles. Macromolecules 44:3746–3752

    Article  CAS  Google Scholar 

  41. Treat ND, Ayres N, Boyes SG, Brittain WJ (2006) A facile route to poly(acrylic acid) brushes using atom transfer radical polymerization. Macromolecules 39:26–29

    Article  CAS  Google Scholar 

  42. Hazer B, Ashby RD (2021) Synthesis of a novel tannic acid-functionalized polypropylene as antioxidant active-packaging materials. Food Chem 344:128644

    Article  CAS  PubMed  Google Scholar 

  43. Balci M, Alli A, Hazer B, Guven O, Cavicchi K, Cakmak M (2010) Synthesis and characterization of novel comb-type amphiphilic graft copolymers containing polypropylene and polyethylene glycol. Polym Bull 64:691–705

    Article  CAS  Google Scholar 

  44. Ciftci M, Batat P, Demirel AL, Xu GJ, Buchmeiser M, Yagci Y (2013) Visible light-induced grafting from Polyolefins. Macromolecules 46:6395–6401

    Article  CAS  Google Scholar 

  45. Altinkok C, Karabulut HRF, Tasdelen MA, Acik G (2020) Bile acid bearing poly (vinyl chloride) nanofibers by combination of CuAAC click chemistry and electrospinning process. Mater Today Commun 25:101425

    Article  CAS  Google Scholar 

  46. Wang XX, Pellerin C, Bazuin CG (2016) Enhancing the Electrospinnability of low molecular weight polymers using small effective cross-linkers. Macromolecules 49:891–899

    Article  CAS  Google Scholar 

  47. Wen LP, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angewandte Chemie-Int Ed 54:3387–3399

    Article  CAS  Google Scholar 

  48. Sarkar D, El Khoury JM, Lopina ST, Hu J (2007) Grafting poly(t-butyl acrylate) to poly(allylamine) by inverse microemulsion radical polymerization: from comb-polymer to amphiphilic shell crosslinked polvmer nanocapsule. J Appl Polym Sci 104:1905–1911

    Article  CAS  Google Scholar 

  49. Schneider Y, McVerry BT, Bazan GC (2011) Synthesis and characterization of Semicrystalline polyethylene-graft-poly(acrylic acid) copolymers. Macromol Chem Phys 212:507–514

    Article  CAS  Google Scholar 

  50. Macossay J, Marruffo A, Rincon R, Eubanks T, Kuang A (2007) Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polym Adv Technol 18:180–183

    Article  CAS  Google Scholar 

  51. Li WS, Shi LH, Shen DY, Luo BL (1988) Structure thermal-stability relationship and thermal-degradation of chlorinated atactic polypropylene. Polym Degrad Stab 22:375–385

    Article  CAS  Google Scholar 

  52. Bak JM, Lee HI (2012) pH-tunable aqueous dispersion of graphene nanocomposites functionalized with poly(acrylic acid) brushes. Polymer 53:4955–4960

    Article  CAS  Google Scholar 

  53. Acik G, Altinkok C (2019) Polypropylene microfibers via solution electrospinning under ambient conditions. J Appl Polym Sci 136:48199

    Article  Google Scholar 

  54. Jia QM, Zheng M, Zhu YC, Li JB, Xu CZ (2007) Effects of organophilic montmorillonite on hydrogen bonding, free volume and glass transition temperature of epoxy resin/polyurethane interpenetrating polymer networks. Eur Polym J 43:35–42

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Acik.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(TIF 101 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acik, G. Fabrication of polypropylene-g-poly(acrylic acid) based microfibers by combination of photo-induced metal-free ATRP and electrospinning process. J Polym Res 31, 146 (2024). https://doi.org/10.1007/s10965-024-03989-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03989-3

Keywords

Navigation