Skip to main content
Log in

Structural investigation of cobalt oxide seeded silica xerogels under harsh hydrothermal condition

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This work reports the hydrothermal treatment effect on cobalt silica-seeded xerogels under harsh conditions at 550 °C for 100 h in a humid gas stream containing 25 mol% H2O(v). A series of two seeded xerogels were prepared by two distinct methods, namely, xerogel seeding (XG) and sol–gel seeding (SG). Post-hydrothermal structural analysis showed type I sorption isotherms for both seeded xerogel, associated with microporous domains after harsh hydrothermal treatment. However, the SG series loaded with ≥25 mol% Co resulted in the formation of hysteresis, a characteristic of mesoporous silica. As a consequence, the SG series resulted in higher pore volume and surface area for higher Co loading than the XG series. Interestingly, surface area and pore volume retention (ratio of prior over post-hydrothermal treatment) increased with Co loading. For instance, seeded xerogels (0 mol% Co) resulted in ~45% retention whilst those containing 40 mol% Co reached structural retention values up to 70% (surface area) and 80% (pore volume). Further analysis of the pore size distribution showed densification for the pore size ranges of <14 and 17–28 Å, though pore size enlargement in the pore ranges of 14–17 and 28–387 Å. A mechanistic model is proposed indicating that cobalt oxide particles confer a region of protection to the adjacent silica structure that opposes densification.

Highlights

  • Hydrothermally treated CoSi seeded xerogels at 550 °C for 100 h at 25 mol% H2O(v).

  • Surface area and pore volume retention post hydrothermal treatment increased with Co loading.

  • Densification for the pore size ranges of <14 Å and 17–28 Å post hydrothermal treatment.

  • Pore size enlargement in the pore ranges of 14–17 Å and 28–387 Å post hydrothermal treatment

  • CoOx particles confer protection to the adjacent silica structure that opposes densification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New York

  2. de Vos RM, Verweij H (1998) High-selectivity, high-flux silica membranes for gas separation. Science 279:1710–1711

    Article  Google Scholar 

  3. Duke MC, Pas SJ, Hill AJ, Lin YS, Diniz da Costa JC (2008) Exposing the molecular sieving architecture of amorphous silica using positron annihilation spectroscopy. Adv Funct Mater 18:3818–3826

    Article  CAS  Google Scholar 

  4. Brinker CJ, Sehgal R, Hietala SL, Deshpande R, Smith DM, Loy D, Ashley CS (1994) SG strategies for controlled porosity inorganic materials. J Membr Sci 94:85–102

    Article  CAS  Google Scholar 

  5. Tsuru T (2008) Nano/subnano-tuning of porous ceramic membranes for molecular separation. J Sol-Gel Sci Technol 46:349–361

    Article  CAS  Google Scholar 

  6. Shilova OA (2013) Synthesis and structure features of composite silicate and hybrid TEOS-derived thin films doped by inorganic and organic additives. J Sol-Gel Sci Technol 68:387–410

    Article  CAS  Google Scholar 

  7. Diniz da Costa JC, Coombs S, Lim J, Lu GQ (2004) Characterisation of xerogels derived from sucrose templated sol-gel synthesis. J Sol-Gel Sci Technol 31:215–218

    Article  CAS  Google Scholar 

  8. Wang K, Wang H, Cheng Y (2017) Morphology control of mesoporous silica-carbon nanocomposites via phase separation of poly(furfuryl alcohol) and silica in the sol–gel synthesis. J Sol-Gel Sci Technol 82:664–674

    Article  CAS  Google Scholar 

  9. de Vos RM, Maier WF, Verweij H (1999) Hydrophobic silica membranes for gas separation. J Membr Sci 158:277–288

    Article  Google Scholar 

  10. Chua YT, Lin CXC, Kleitz F, Smart S (2015) Synthesis of mesoporous carbon–silica nanocomposite water-treatment membranes using a triconstituent co-assembly method. J Mater Chem A 3:10480–10491

    Article  CAS  Google Scholar 

  11. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    Article  CAS  Google Scholar 

  12. Castricum HL, Paradis GG, Mittelmeijer-Hazeleger MC, Kreiter R, Vente JF, ten Elshof JE (2011) Tailoring the separation behavior of hybrid organosilica membranes by adjusting the structure of the organic bridging group. Adv Funct Mater 21:2319–2329

    Article  CAS  Google Scholar 

  13. Xu R, Wang J, Kanezashi M, Yoshioka T, Tsuru T (2011) Development of robust organosilica membranes for reverse osmosis. Langmuir 27:13996–13999

    Article  CAS  Google Scholar 

  14. Yang H, Wang DK, Motuzas J, Diniz da Costa JC (2018) Hybrid vinyl silane and P123 template sol−gel derived carbon silica membrane for desalination. J Sol-Gel Sci Technol 85:280–289

    Article  CAS  Google Scholar 

  15. Uhlmann D, Smart S, Diniz da Costa JC (2010) High temperature steam investigation of cobalt oxide silica membranes for gas separation. Sep Purif Technol 76:171–178

    Article  CAS  Google Scholar 

  16. Wang J, Tsuru T (2011) Cobalt-doped silica membranes for pervaporation dehydration of ethanol/water solutions. J Membr Sci 369:13–19

    Article  CAS  Google Scholar 

  17. Liu L, Wang DK, Kappen P, Martens DL, Smart S, Diniz da Costa JC (2015) Hydrothermal stability investigation of microporous silica containing long-range ordered cobalt oxide clusters by XAS. Phys Chem Chem Phys 17:19500–19506

    Article  CAS  Google Scholar 

  18. Gu Y, Oyama ST (2009) Permeation properties and hydrothermal stability of silica–titania membranes supported on porous alumina substrates. J Membr Sci 345:267–275

    Article  CAS  Google Scholar 

  19. Yoshida K, Hirano Y, Fujii H, Tsuru T, Asaeda M (2001) Hydrothermal stability and performance of silica-zirconia membranes for hydrogen separation in hydrothermal conditions. J Chem Eng Jpn 34:523–530

    Article  CAS  Google Scholar 

  20. Boffa V, Magnacca G, Jørgensen LB, Wehner A, Dörnhöfer A, Yue Y (2013) Toward the effective design of steam-stable silica-based membranes. Microporous Mesoporous Mater 179:242–249

    Article  CAS  Google Scholar 

  21. Boffa V, Blank DHA, ten Elshof JE (2008) Hydrothermal stability of microporous silica and niobia–silica membranes. J Membr Sci 319:256–263

    Article  CAS  Google Scholar 

  22. Darmawan A, Karlina L, Astuti Y, Sriatun, Wang DK, Diniz da Costa JC (2016) Structural evolution of nickel oxide silica sol-gel for the preparation of interlayer-free membranes. J Noncryst Solids 447:9–15

    Article  CAS  Google Scholar 

  23. Kanezashi M, Asaeda M (2006) Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J Membr Sci 271:86–93

    Article  CAS  Google Scholar 

  24. Ikuhara YH, Mori H, Saito T, Iwamoto Y (2007) High-temperature hydrogen adsorption properties of precursor-derived nickel nanoparticle-dispersed amorphous silica. J Am Ceram Soc 90:546–552

    Article  CAS  Google Scholar 

  25. Ballinger B, Motuzas J, Smart S, Ismail S, Zubir NA, Abd Jalil SN, Diniz da Costa JC (2020) Catalysis of silica sol–gel reactions using a PdCl2 precursor. J Sol-Gel Sci Technol 95:456–464

    Article  CAS  Google Scholar 

  26. Kanezashi M, Sano M, Yoshioka TM, Tsuru T (2010) Extremely thin Pd–silica mixed-matrix membranes with nano-dispersion for improved hydrogen permeability. Chem Commun 46:6171–6173

    Article  CAS  Google Scholar 

  27. Darmawan A, Motuzas J, Smart S, Julbe A, Diniz da Costa JC (2016) Gas permeation redox effect on binary iron cobalt oxide silica membranes. Sep Purif Technol 171:248–255

    Article  CAS  Google Scholar 

  28. Ballinger B, Motuzas J, Smart S, Diniz da Costa JC (2015) Redox effect on binary lanthanum cobalt silica membranes with enhanced silicate formation. J Membr Sci 489:220–226

    Article  CAS  Google Scholar 

  29. Ballinger B, Motuzas J, Smart S, Diniz da Costa JC (2014) Palladium cobalt binary doping of molecular sieving silica membranes. J Membr Sci 451:185–191

    Article  CAS  Google Scholar 

  30. Igi R, Yoshioka T, Ikuhara YH, Iwamoto Y, Tsuru T (2008) Characterization of Co-doped silica for improved hydrothermal stability and application to hydrogen separation membranes at high temperatures. J Am Ceram Soc 91:2975–2981

    Article  CAS  Google Scholar 

  31. Liu L, Wang DK, Martens DL, Smart S, Diniz da Costa JC (2015) Binary gas mixture and hydrothermal stability investigation of cobalt doped silica membranes. J Membr Sci 493:470–477

    Article  CAS  Google Scholar 

  32. Esposito S, Dal Vecchio S, Ramis G, Bevilacqua M, Turco M, Bagnasco G, Cammarano C, Aronne A, Pernice P (2007) Sol-gel synthesis of silicon cobalt mixed oxide nanocomposites. Chem Eng Trans 11:83–88

    Google Scholar 

  33. Liu L, Wang DK, Martens DL, Smart S, Diniz da Costa JC (2015) Influence of the cobalt phase sol-gel conditioning on the hydrothermal stability of cobalt doped silica membranes. J Membr Sci 475:425–432

    Article  CAS  Google Scholar 

  34. Martens DL, Wang DK, Motuzas J, Smart S, Diniz da Costa JC (2015) Modulation of microporous/mesoporous structures in self-templated cobalt-silica. Sci Rep 5:7970

    Article  CAS  Google Scholar 

  35. Jha A, Rode CV (2013) Highly selective liquid-phase aerobic oxidation of vanillyl alcohol to vanillin on cobalt oxide (Co3O4) nanoparticles. N J Chem 37:2669–2674

    Article  CAS  Google Scholar 

  36. Uhlmann D, Smart S, Diniz da Costa JC (2011) H2S stability and separation performance of cobalt oxide silica membranes. J Membr Sci 380:48–54

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support provided by the Australian Government through its CRC programme to support this CO2CRC research project. JCDC acknowledges the grant as invited Professor funded by the Associate Laboratory for Green Chemistry—LAQV, and financed by the National Portuguese funds from FCT/MCTES (UIDB/50006/2020). The authors also acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Motuzas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martens, D.L., Motuzas, J., Smart, S. et al. Structural investigation of cobalt oxide seeded silica xerogels under harsh hydrothermal condition. J Sol-Gel Sci Technol 98, 470–477 (2021). https://doi.org/10.1007/s10971-021-05527-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05527-9

Keywords

Navigation