Skip to main content
Log in

Green chemical synthesis for well-defined and sharply distributed SiO2@FexOy particles

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Using a non-toxic precursor, we created a green chemical synthesis for colloidal spheres with a core@shell structure having a silica core and an iron oxide shell (SiO2@FexOy). Our synthesis pathway enabled an iron oxide shell formation with a 9 ± 6 nm thick shell onto colloidal silica spheres (ca. 700 nm). SiO2@FexOy particles reduced A549 cell viability and induced DNA damage. SiO2@FexOy particles showed the potential for removing fluoride from water.

Highlights

  • Green chemical synthesis for monodisperse, spherical SiO2@FexOy particles. A 9 ± 6 nm thick shell of iron oxide formed onto monodisperse silica spheres.

  • The presence of the shell reduced A549 cell viability and induced DNA damage.

  • SiO2@FexOy particles removed fluoride from water in batch systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data are available.

References

  1. Loganathan P, Vigneswaran S, Kandasamy J, Naidu R (2013) Defluoridation of drinking water using adsorption processes. J Hazard Mater 1–19. https://doi.org/10.1016/j.jhazmat.2012.12.043

  2. He J, Yang Y, Wu Z, Xie C, Zhang K, Kong L, Liu J (2020) Review of fluoride removal from water environment by adsorption. J Environ Chem Eng 8:104516. https://doi.org/10.1016/j.jece.2020.104516

    Article  CAS  Google Scholar 

  3. Stöber W, Fink A, Bohn E(1968) Controlled growth of monodisperse silica spheres in the micron size range J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  4. Xu J, Wu P, Ye EC, Yuan BF, Feng YQ (2016) Metal oxides in sample pretreatment. Trends Anal Chem 80:41–56. https://doi.org/10.1016/j.trac.2016.02.027

    Article  CAS  Google Scholar 

  5. Kuang L, Liu Y, Fu D, Zhao Y (2016) FeOOH-graphene oxide nanocomposites for fluoride removal from water: acetate mediated nano FeOOH growth and adsorption mechanism. J Colloid Interface Sci 490:259–269. https://doi.org/10.1016/j.jcis.2016.11.071

    Article  CAS  Google Scholar 

  6. Zhang AC, Li Y, Wang T (2017) Synthesis and properties of a high-capacity iron oxide adsorbent for fluoride removal from drinking water. Appl Surf Sci 425:272–281. https://doi.org/10.1016/j.apsusc.2017.06.159

    Article  CAS  Google Scholar 

  7. Chae HS, Kim SD, Piao SH, Choi HJ (2016) Core-shell structured Fe3O4@SiO2 nanoparticles fabricated by sol–gel method and their magnetorheology. Colloid Polym Sci 294:647–655. https://doi.org/10.1007/s00396-015-3818-y

    Article  CAS  Google Scholar 

  8. Alavi Nikje MM, Tamaddoni Moghaddam S, Noruzian M, Farahmand Nejad MA, Shabani K, Haghshenas M, Shakhesi S (2014) Preparation and characterization of flexible polyurethane foam nanocomposites reinforced by magnetic core-shell Fe3O 4@APTS nanoparticles. Colloid Polym Sci 292:627–633. https://doi.org/10.1007/s00396-013-3099-2

    Article  CAS  Google Scholar 

  9. Liu YD, Fang FF, Choi HJ (2011) Core-shell-structured silica-coated magnetic carbonyl iron microbead and its magnetorheology with anti-acidic characteristics. Colloid Polym Sci 289:1295–1298. https://doi.org/10.1007/s00396-011-2452-6

    Article  CAS  Google Scholar 

  10. Zhang JM, Zhai SR, Zhai B, An Q, Da, Tian G (2012) Crucial factors affecting the physicochemical properties of sol-gel produced Fe3O4@SiO2-NH2 core-shell nanomaterials. J Sol-Gel Sci Technol 64:347–357. https://doi.org/10.1007/s10971-012-2864-x

    Article  CAS  Google Scholar 

  11. Zhang J, Liu M, Liu Z, Yang T, He Q, Yang K, Wang H (2017) Studies of malachite green adsorption on covalently functionalized Fe3O4@SiO2–graphene oxides core–shell magnetic microspheres. J Sol-Gel Sci Technol 82:424–431. https://doi.org/10.1007/s10971-017-4307-1

    Article  CAS  Google Scholar 

  12. Samiey B, Cheng CH, Wu J (2014) Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials (Basel) 7:673–726. https://doi.org/10.3390/ma7020673

    Article  CAS  Google Scholar 

  13. Zhu Y, Jiang FY, Chen K, Kang F, Tang ZK (2013) Modified reverse microemulsion synthesis for iron oxide/silica core-shell colloidal particles. J Sol-Gel Sci Technol 66:180–186. https://doi.org/10.1007/s10971-013-2985-x

    Article  CAS  Google Scholar 

  14. Meng SC, Wang H, Qing M, Qiu CW, Yang Y, Li YW (2015) Preparation and characterization of SiO2@Fe2O3 core-shell catalysts. J Fuel Chem Technol 43:692–700. https://doi.org/10.1016/s1872-5813(15)30020-7

    Article  CAS  Google Scholar 

  15. Regulatory Affairs, T.F.S. Safety Data Sheet: Iron(III) acetylacetonate. (2018) https://www.fishersci.com/store/msds?partNumber=AC119130010&productDescription=IRON%28III%29+ACETYLACETONAT+1KG&vendorId=VN00032119&countryCode=US&language=en. Accessed 19 Oct 2020

  16. Anastas PT, Warner JC (1998) Green chemistry theory and practice. Oxford University Press, New York, ISBN 0-19-850698-8

  17. Safety data sheet: Iron(III) nitrate nonahydrate. (2017) www.carlroth.com/downloads/sdb/en/5/SDB_5632_AU_EN.pdf. Accessed 19 Oct 2020

  18. Arnal PM, Weidenthaler C, Schüth F (2006) Highly monodisperse zirconia-coated silica spheres and zirconia/ silica hollow spheres with remarkable textural properties. Chem Mater 18:2733–2739. https://doi.org/10.1021/cm052580a

    Article  CAS  Google Scholar 

  19. Montgomery CD (2005) Design and analysis of experiments, 6th edn. John Wiley & Sons Inc, New York, NY, USA. ISBN 0-471-48735-X

  20. ASTM International ASTM D1179-99 Standard test methods for fluoride ion in water. (1999) https://doi.org/10.1520/D1179-99

  21. Montgomery DC (2003) Applied statistics and probability for engineers, 3rd edn. John Wiley & Sons Inc, West Conshohocken, PA, USA. ISBN 0471204544

    Google Scholar 

  22. Rahman MM, Govindarajulu Z (1997) A modification of the test of Shapiro and Wilk for normality. J Appl Stat 24:219–236. https://doi.org/10.1080/02664769723828

    Article  Google Scholar 

  23. Di Rienzo JA, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo CW (2014) InfoStat. Software estadístico. Versión estudiantil 2014

  24. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58. https://doi.org/10.1214/aoms/1177729885

    Article  Google Scholar 

  25. Wright JD, Sommerdijk (2001) In: Phillips S (ed.) AJM sol-gel materials chemistry and applications, Vol. 4. Taylor & Francis, Liverpool (UK), ISBN 90-5699-326-7

  26. Keller A, Wlokas I, Kohns M, Hasse H (2020) Thermophysical properties of solutions of Iron(III) nitrate-nonahydrate in mixtures of ethanol and water. J Chem Eng Data 65:3519–3527. https://doi.org/10.1021/acs.jced.0c00105

    Article  CAS  Google Scholar 

  27. Ledda M, Fioretti D, Lolli MG, Papi M, Di Gioia C, Carletti R, Ciasca G, Foglia S, Palmieri V, Marchese R et al. (2020) Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale 12:1759–1778. https://doi.org/10.1039/c9nr09683c

    Article  CAS  Google Scholar 

  28. Williams LJ, Zosky GR (2019) The inflammatory effect of iron oxide and silica particles on lung epithelial cells. Lung 197:199–207. https://doi.org/10.1007/s00408-019-00200-z

    Article  CAS  Google Scholar 

  29. Andujar P, Simon-Deckers A, Galateau-Sallé F, Fayard B, Beaune G, Clin B, Billon-Galland MA, Durupthy O, Pairon JC, Doucet J et al. (2014) Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders. Part Fibre Toxicol 11:1–13. https://doi.org/10.1186/1743-8977-11-23

    Article  CAS  Google Scholar 

  30. Rushton L (2007) Chronic obstructive pulmonary disease and occupational exposure to silica. Rev Environ Health 22:255–272. https://doi.org/10.1515/REVEH.2007.22.4.255

    Article  CAS  Google Scholar 

  31. Iler RK (1979) The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. John Wiley & Sons, New York, (EEUU), ISBN 0-471-02404-X

    Google Scholar 

  32. Mukherjee S, Halder G (2018) A review on the sorptive elimination of fluoride from contaminated wastewater. J Environ Chem Eng 6:1257–1270. https://doi.org/10.1016/j.jece.2018.01.046

    Article  CAS  Google Scholar 

  33. Habuda-Stanić M, Ravančić M, Flanagan A (2014) A review on adsorption of fluoride from aqueous solution. Materials (Basel) 7:6317–6366. https://doi.org/10.3390/ma7096317

    Article  Google Scholar 

  34. Vinati A, Mahanty B, Behera SK (2015) Clay and clay minerals for fluoride removal from water: a state-of-the-art review. Appl Clay Sci 114:340–348. https://doi.org/10.1016/j.clay.2015.06.013

    Article  CAS  Google Scholar 

  35. Di Virgilio AL, Maisuls I, Kleitz F, Arnal PM (2013) A new synthesis pathway for colloidal silica spheres coated with crystalline titanium oxide and its comparative cyto- and genotoxic study with titanium oxide nanoparticles in rat osteosarcoma (UMR106) cells. J Colloid Interface Sci 394:147–156. https://doi.org/10.1016/j.jcis.2012.11.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (PIP-2013-0105, Long’s doctoral fellowship), Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) (PICT-2014-2583 and PICT 2016-0508), and Universidad Nacional de La Plata (UNLP) (PPID 2018) partially supported this study.

Author information

Authors and Affiliations

Authors

Contributions

FL performed investigation. LAL performed formal analysis. ALDV performed conceptualization, funding acquisition, and writing—review and editing. PMA performed conceptualization, funding acquisition, and writing—original draft and review and editing.

Corresponding author

Correspondence to Pablo M. Arnal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

This study is dedicated to Professor Dr. Ferdi Schüth on the occasion of his 60th birthday.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leis, F., Long, L.A., Di Virgilio, A.L. et al. Green chemical synthesis for well-defined and sharply distributed SiO2@FexOy particles. J Sol-Gel Sci Technol 98, 541–548 (2021). https://doi.org/10.1007/s10971-021-05521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-021-05521-1

Keywords

Navigation